bev-project/mmdet3d/ops/interpolate/three_interpolate.py

60 lines
1.9 KiB
Python

import torch
from torch.autograd import Function
from typing import Tuple
from . import interpolate_ext
class ThreeInterpolate(Function):
@staticmethod
def forward(
ctx, features: torch.Tensor, indices: torch.Tensor, weight: torch.Tensor
) -> torch.Tensor:
"""Performs weighted linear interpolation on 3 features.
Args:
features (Tensor): (B, C, M) Features descriptors to be
interpolated from
indices (Tensor): (B, n, 3) index three nearest neighbors
of the target features in features
weight (Tensor): (B, n, 3) weights of interpolation
Returns:
Tensor: (B, C, N) tensor of the interpolated features
"""
assert features.is_contiguous()
assert indices.is_contiguous()
assert weight.is_contiguous()
B, c, m = features.size()
n = indices.size(1)
ctx.three_interpolate_for_backward = (indices, weight, m)
output = torch.cuda.FloatTensor(B, c, n)
interpolate_ext.three_interpolate_wrapper(B, c, m, n, features, indices, weight, output)
return output
@staticmethod
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Backward of three interpolate.
Args:
grad_out (Tensor): (B, C, N) tensor with gradients of outputs
Returns:
Tensor: (B, C, M) tensor with gradients of features
"""
idx, weight, m = ctx.three_interpolate_for_backward
B, c, n = grad_out.size()
grad_features = torch.cuda.FloatTensor(B, c, m).zero_()
grad_out_data = grad_out.data.contiguous()
interpolate_ext.three_interpolate_grad_wrapper(
B, c, n, m, grad_out_data, idx, weight, grad_features.data
)
return grad_features, None, None
three_interpolate = ThreeInterpolate.apply