98 lines
3.1 KiB
Python
98 lines
3.1 KiB
Python
# Copyright (c) OpenMMLab. All rights reserved.
|
|
import warnings
|
|
|
|
from mmcv.cnn import build_conv_layer, build_norm_layer
|
|
from mmcv.runner import BaseModule
|
|
from torch import nn as nn
|
|
|
|
from mmdet.models import BACKBONES
|
|
|
|
__all__ = ["SECOND"]
|
|
|
|
|
|
@BACKBONES.register_module()
|
|
class SECOND(BaseModule):
|
|
"""Backbone network for SECOND/PointPillars/PartA2/MVXNet.
|
|
|
|
Args:
|
|
in_channels (int): Input channels.
|
|
out_channels (list[int]): Output channels for multi-scale feature maps.
|
|
layer_nums (list[int]): Number of layers in each stage.
|
|
layer_strides (list[int]): Strides of each stage.
|
|
norm_cfg (dict): Config dict of normalization layers.
|
|
conv_cfg (dict): Config dict of convolutional layers.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels=128,
|
|
out_channels=[128, 128, 256],
|
|
layer_nums=[3, 5, 5],
|
|
layer_strides=[2, 2, 2],
|
|
norm_cfg=dict(type="BN", eps=1e-3, momentum=0.01),
|
|
conv_cfg=dict(type="Conv2d", bias=False),
|
|
init_cfg=None,
|
|
pretrained=None,
|
|
):
|
|
super().__init__(init_cfg=init_cfg)
|
|
assert len(layer_strides) == len(layer_nums)
|
|
assert len(out_channels) == len(layer_nums)
|
|
|
|
in_filters = [in_channels, *out_channels[:-1]]
|
|
# note that when stride > 1, conv2d with same padding isn't
|
|
# equal to pad-conv2d. we should use pad-conv2d.
|
|
blocks = []
|
|
for i, layer_num in enumerate(layer_nums):
|
|
block = [
|
|
build_conv_layer(
|
|
conv_cfg,
|
|
in_filters[i],
|
|
out_channels[i],
|
|
3,
|
|
stride=layer_strides[i],
|
|
padding=1,
|
|
),
|
|
build_norm_layer(norm_cfg, out_channels[i])[1],
|
|
nn.ReLU(inplace=True),
|
|
]
|
|
for j in range(layer_num):
|
|
block.append(
|
|
build_conv_layer(
|
|
conv_cfg, out_channels[i], out_channels[i], 3, padding=1
|
|
)
|
|
)
|
|
block.append(build_norm_layer(norm_cfg, out_channels[i])[1])
|
|
block.append(nn.ReLU(inplace=True))
|
|
|
|
block = nn.Sequential(*block)
|
|
blocks.append(block)
|
|
|
|
self.blocks = nn.ModuleList(blocks)
|
|
|
|
assert not (
|
|
init_cfg and pretrained
|
|
), "init_cfg and pretrained cannot be setting at the same time"
|
|
if isinstance(pretrained, str):
|
|
warnings.warn(
|
|
"DeprecationWarning: pretrained is a deprecated, "
|
|
'please use "init_cfg" instead'
|
|
)
|
|
self.init_cfg = dict(type="Pretrained", checkpoint=pretrained)
|
|
else:
|
|
self.init_cfg = dict(type="Kaiming", layer="Conv2d")
|
|
|
|
def forward(self, x):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input with shape (N, C, H, W).
|
|
|
|
Returns:
|
|
tuple[torch.Tensor]: Multi-scale features.
|
|
"""
|
|
outs = []
|
|
for i in range(len(self.blocks)):
|
|
x = self.blocks[i](x)
|
|
outs.append(x)
|
|
return tuple(outs)
|