bev-project/EXPLAIN_BEV_RESOLUTION.py

143 lines
5.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python
"""
解释BEV特征1440×1440尺寸的由来
"""
def explain_bev_resolution():
print("="*80)
print("🎯 BEV特征尺寸1440×1440详细解释")
print("="*80)
# 1. 基本参数
print("\n📊 1. 基本参数")
print("-" * 50)
bev_range = 54 - (-54) # 108米
voxel_size = 0.075 # 米/像素
sparse_shape = [1440, 1440, 41]
print("LiDAR配置参数:")
print(f"├── 检测范围: [-54m, +54m] = {bev_range}m × {bev_range}m")
print(f"├── 体素尺寸: {voxel_size}m × {voxel_size}m × 0.2m")
print(f"├── 稀疏形状: {sparse_shape}")
# 2. 尺寸计算过程
print("\n🔢 2. 尺寸计算过程")
print("-" * 50)
print("BEV像素计算:")
print(f"├── 空间范围: {bev_range}")
print(f"├── 像素分辨率: {voxel_size}米/像素")
print(f"├── 像素数量: {bev_range} ÷ {voxel_size} = {bev_range / voxel_size}")
print("└── 实际尺寸: 1440 × 1440 像素 ✅")
# 3. 验证计算
print("\n✅ 3. 计算验证")
print("-" * 50)
calculated_pixels = int(bev_range / voxel_size)
print(f"理论计算: {bev_range} / {voxel_size} = {calculated_pixels}")
print(f"配置指定: {sparse_shape[0]} × {sparse_shape[1]}")
print(f"匹配程度: {'✅ 完全匹配' if calculated_pixels == sparse_shape[0] else '❌ 不匹配'}")
# 4. 实际空间分辨率
print("\n📏 4. 实际空间分辨率")
print("-" * 50)
pixel_count = sparse_shape[0]
actual_resolution = bev_range / pixel_count
print("分辨率分析:")
print(f"├── BEV覆盖范围: {bev_range}m")
print(f"├── 像素数量: {pixel_count}")
print(f"├── 实际分辨率: {actual_resolution:.4f}m/像素")
print(f"├── 配置分辨率: {voxel_size:.4f}m/像素")
print(f"└── 精度: {'✅ 高精度' if actual_resolution <= voxel_size else '❌ 精度不足'}")
# 5. 为什么需要这么高分辨率?
print("\n🎯 5. 为什么需要1440×1440高分辨率")
print("-" * 50)
reasons = [
("精确几何重建", "LiDAR点云密度高需要高分辨率保持几何细节"),
("多尺度特征", "为分割头提供丰富的多尺度上下文信息"),
("安全冗余", "自动驾驶需要厘米级精度0.075m≈7.5cm足够"),
("融合效率", "与Camera BEV (541×541) 的分辨率差异需要中间层过渡"),
("分割精度", "道路元素分割需要细粒度特征表示")
]
for i, (title, explanation) in enumerate(reasons, 1):
print(f"{i}. {title}:")
print(f" {explanation}")
# 6. 与其他分辨率的对比
print("\n📊 6. 分辨率对比")
print("-" * 50)
resolutions = {
"Camera BEV": {"size": "541×541", "resolution": "0.2m/px", "purpose": "图像投影BEV"},
"LiDAR BEV": {"size": "1440×1440", "resolution": "0.075m/px", "purpose": "点云稠密BEV"},
"分割输出": {"size": "598×598", "resolution": "0.167m/px", "purpose": "最终分割图"}
}
print("各阶段分辨率对比:")
print("阶段".ljust(12), "尺寸".ljust(12), "分辨率".ljust(12), "用途")
print("-" * 60)
for stage, info in resolutions.items():
print(f"{stage:<12} {info['size']:<12} {info['resolution']:<12} {info['purpose']}")
# 7. 内存影响
print("\n💾 7. 内存占用影响")
print("-" * 50)
channels = 256 # SECONDFPN输出通道数
batch_size = 1
bytes_per_float32 = 4
bev_memory = sparse_shape[0] * sparse_shape[1] * channels * bytes_per_float32
bev_memory_mb = bev_memory / (1024 * 1024)
print("内存计算 (单batch, float32):")
print(f"├── BEV尺寸: {sparse_shape[0]}×{sparse_shape[1]}×{channels}ch")
print(f"├── 像素总数: {sparse_shape[0] * sparse_shape[1]:,}")
print(f"├── 参数总数: {sparse_shape[0] * sparse_shape[1] * channels:,}")
print(f"├── 内存占用: {bev_memory_mb:.1f} MB")
print(f"└── GPU需求: 需要至少8GB VRAM可用空间")
# 8. 技术权衡
print("\n⚖️ 8. 技术权衡分析")
print("-" * 50)
tradeoffs = {
"优点": [
"极高几何精度 (7.5cm)",
"丰富的上下文信息",
"支持精细分割任务",
"LiDAR数据充分利用"
],
"挑战": [
"巨大内存占用 (2GB+)",
"计算复杂度高",
"训练时间长",
"存储空间需求大"
],
"优化策略": [
"分层特征提取",
"稀疏计算优化",
"混合精度训练",
"数据并行训练"
]
}
for category, items in tradeoffs.items():
print(f"\n{category}:")
for item in items:
print(f"├── {item}")
print("\n" + "="*80)
print("🏁 BEV分辨率解释完成1440×1440是精确几何重建的必然选择")
print("="*80)
if __name__ == '__main__':
explain_bev_resolution()