99 lines
3.0 KiB
Python
99 lines
3.0 KiB
Python
#!/usr/bin/env python
|
||
"""
|
||
从已有的pkl结果文件进行评估,跳过推理步骤
|
||
"""
|
||
import os
|
||
import pickle
|
||
import sys
|
||
import torch
|
||
|
||
# 设置环境
|
||
os.environ['PATH'] = '/opt/conda/bin:' + os.environ.get('PATH', '')
|
||
os.environ['LD_LIBRARY_PATH'] = '/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
|
||
os.environ['PYTHONPATH'] = '/workspace/bevfusion:' + os.environ.get('PYTHONPATH', '')
|
||
|
||
def main():
|
||
import mmcv
|
||
from mmcv import Config
|
||
from mmdet3d.datasets import NuScenesDataset
|
||
|
||
# 加载配置
|
||
config_file = 'configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_BEV2X_phase4b_rmtppad_segmentation.yaml'
|
||
cfg = Config.fromfile(config_file)
|
||
|
||
# 设置为测试模式
|
||
cfg.data.val.test_mode = True
|
||
|
||
# 创建数据集
|
||
print("正在创建数据集...")
|
||
from mmdet3d.datasets import build_dataset
|
||
|
||
# 构建完整的val配置 (参考nuscenes/default.yaml)
|
||
val_config = {
|
||
'type': 'NuScenesDataset',
|
||
'dataset_root': cfg.dataset_root,
|
||
'ann_file': cfg.dataset_root + 'nuscenes_infos_val.pkl',
|
||
'pipeline': cfg.evaluation.pipeline,
|
||
'object_classes': cfg.object_classes,
|
||
'map_classes': cfg.map_classes,
|
||
'modality': {
|
||
'use_lidar': True,
|
||
'use_camera': True,
|
||
'use_radar': False,
|
||
'use_map': False,
|
||
'use_external': False
|
||
},
|
||
'test_mode': True,
|
||
'use_valid_flag': False,
|
||
'box_type_3d': 'LiDAR',
|
||
'load_interval': cfg.data.val.load_interval if hasattr(cfg.data.val, 'load_interval') else 1
|
||
}
|
||
|
||
dataset = build_dataset(val_config)
|
||
print(f"数据集大小: {len(dataset)}")
|
||
|
||
# 加载已有的结果
|
||
results_file = '/data/eval_fast/epoch1_fast_20251119_133104/fast_results.pkl'
|
||
print(f"正在加载结果文件: {results_file}")
|
||
|
||
with open(results_file, 'rb') as f:
|
||
results = pickle.load(f)
|
||
|
||
print(f"结果文件包含 {len(results)} 个样本")
|
||
|
||
# 检查结果格式
|
||
if results:
|
||
sample = results[0]
|
||
print(f"样本键: {list(sample.keys())}")
|
||
if 'boxes_3d' in sample:
|
||
print(f"检测框数量: {len(sample['boxes_3d'])}")
|
||
if 'masks_bev' in sample:
|
||
print(f"BEV分割mask形状: {sample['masks_bev'].shape}")
|
||
|
||
# 进行评估
|
||
print("开始评估...")
|
||
eval_kwargs = dict(
|
||
metric=['bbox', 'map'],
|
||
save_best=None,
|
||
rule=None,
|
||
logger=None
|
||
)
|
||
|
||
try:
|
||
eval_results = dataset.evaluate(results, **eval_kwargs)
|
||
print("\n" + "="*50)
|
||
print("评估结果:")
|
||
print("="*50)
|
||
for key, value in eval_results.items():
|
||
if isinstance(value, float):
|
||
print("30")
|
||
else:
|
||
print(f"{key}: {value}")
|
||
except Exception as e:
|
||
print(f"评估失败: {e}")
|
||
import traceback
|
||
traceback.print_exc()
|
||
|
||
if __name__ == '__main__':
|
||
main()
|