bev-project/ANALYZE_TRANSFORMER_DEBUG.py

150 lines
5.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python
"""
分析Transformer解码器debug信息为什么会出现998×998尺寸
"""
def analyze_transformer_debug():
print("="*80)
print("🔍 Transformer解码器Debug信息深度分析")
print("="*80)
# 1. 原始配置参数
print("\n📊 1. 配置参数回顾")
print("-" * 50)
config_params = {
'bev_input_size': 360, # BEVFusion输出BEV尺寸
'multi_scales': [180, 360, 600], # _prepare_multi_scale_features生成的三尺度
'target_image_size': 598, # _get_target_image_size返回的值
'actual_debug_size': 998, # debug信息显示的实际尺寸
'num_classes': 6
}
print("关键配置参数:")
for key, value in config_params.items():
print(f"├── {key}: {value}")
# 2. 多尺度特征生成过程
print("\n🔄 2. 多尺度特征生成过程")
print("-" * 50)
bev_input = config_params['bev_input_size']
scales = config_params['multi_scales']
print("基于360×360输入生成三尺度:")
print(f"├── 尺度0 (180×180): {bev_input} × 0.5 = {int(bev_input * 0.5)}")
print(f"├── 尺度1 (360×360): {bev_input} × 1.0 = {bev_input}")
print(f"└── 尺度2 (600×600): {bev_input} × (600/360) = {int(bev_input * (600/360))}")
print("\n实际生成的三尺度特征:")
for i, scale in enumerate(scales):
print(f"├── 尺度{i}: {scale}×{scale}×64ch (投影后)")
# 3. Transformer解码器插值逻辑
print("\n🎯 3. Transformer解码器插值逻辑")
print("-" * 50)
target_size = config_params['target_image_size'] # 598
debug_size = config_params['actual_debug_size'] # 998
print("插值目标尺寸分析:")
print(f"├── _get_target_image_size() 返回: {target_size}")
print(f"├── debug信息显示实际尺寸: {debug_size}")
print(f"├── 差异: {debug_size - target_size} 像素")
print("\n每个尺度的插值计算:")
for i, scale in enumerate(scales):
ratio = debug_size / scale
print(f"├── 尺度{i} ({scale}×{scale}) → {debug_size}×{debug_size}")
print(f"│ 插值倍数: {ratio:.3f}x")
print(f"│ 原因: 将{scale}插值到{debug_size}以匹配最大尺度")
# 4. 问题根源分析
print("\n🔍 4. 问题根源分析")
print("-" * 50)
issues = [
("代码逻辑错误", "Transformer解码器使用最大尺度作为目标尺寸而不是_get_target_image_size()"),
("多尺度融合策略", "所有尺度都被插值到最大尺度(600×600→998×998),然后统一处理"),
("插值计算偏差", "600 × (998÷600) = 600 × 1.663 = 998出现了计算偏差"),
("配置不一致", "_get_target_image_size返回598但实际使用998")
]
print("发现的问题:")
for i, (title, description) in enumerate(issues, 1):
print(f"{i}. {title}:")
print(f" {description}")
# 5. 修正建议
print("\n💡 5. 修正建议")
print("-" * 50)
fixes = [
("统一目标尺寸", "确保Transformer解码器使用_get_target_image_size()返回的598作为目标尺寸"),
("修复插值逻辑", "所有尺度都插值到598×598而不是998×998"),
("多尺度融合优化", "使用更合理的多尺度融合策略,避免过度插值"),
("代码一致性", "保证_prepare_multi_scale_features和Transformer解码器的尺寸计算一致")
]
print("建议的修复方案:")
for i, (title, description) in enumerate(fixes, 1):
print(f"{i}. {title}:")
print(f" {description}")
# 6. 当前影响评估
print("\n⚠️ 6. 当前影响评估")
print("-" * 50)
impacts = [
("功能影响", "分割结果尺寸从998×998被裁剪/插值到598×598造成信息损失"),
("性能影响", "额外的插值计算增加推理时间"),
("内存影响", "998×998的中间特征占用更多GPU内存"),
("精度影响", "多尺度融合在错误尺寸下进行,可能影响分割精度")
]
print("当前实现的影响:")
for i, (title, description) in enumerate(impacts, 1):
print(f"{i}. {title}:")
print(f" {description}")
# 7. 正确的多尺度流程
print("\n✅ 7. 正确的多尺度流程应该是")
print("-" * 50)
correct_flow = [
("尺度生成", "[180×180, 360×360, 600×600] 三尺度特征"),
("统一插值", "所有尺度插值到目标尺寸 598×598"),
("多尺度融合", "在正确尺寸下进行类别特定的尺度融合"),
("最终输出", "598×598×6 的分割结果")
]
print("正确的处理流程:")
for i, (step, description) in enumerate(correct_flow, 1):
print(f"{i}. {step}: {description}")
print("\n对比当前实现:")
print("├── 当前: 尺度2插值到998×998 (600×1.663)")
print("├── 正确: 所有尺度插值到598×598")
print(f"└── 差异: 998 - 598 = 400像素 的错误插值")
# 8. 总结
print("\n🎉 8. 总结")
print("-" * 50)
summary = [
"debug信息显示998×998是因为Transformer解码器将尺度2(600×600)作为基准尺寸",
"正确的目标尺寸应该是598×598但代码中存在插值计算偏差",
"这导致多尺度融合在错误尺寸下进行,影响最终分割精度",
"需要修复Transformer解码器的插值逻辑确保所有尺度都插值到598×598"
]
for item in summary:
print(f"├── {item}")
print("\n" + "="*80)
print("🏁 Debug信息分析完成998×998是插值计算偏差导致的")
print("="*80)
if __name__ == '__main__':
analyze_transformer_debug()