bev-project/tools/data_converter/nuscenes_converter.py

665 lines
26 KiB
Python

import mmcv
import numpy as np
import os
from collections import OrderedDict
from nuscenes.nuscenes import NuScenes
from nuscenes.utils.geometry_utils import view_points
from os import path as osp
from pyquaternion import Quaternion
from shapely.geometry import MultiPoint, box
from typing import List, Tuple, Union
from mmdet3d.core.bbox.box_np_ops import points_cam2img
from mmdet3d.datasets import NuScenesDataset
nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
'barrier')
nus_attributes = ('cycle.with_rider', 'cycle.without_rider',
'pedestrian.moving', 'pedestrian.standing',
'pedestrian.sitting_lying_down', 'vehicle.moving',
'vehicle.parked', 'vehicle.stopped', 'None')
def create_nuscenes_infos(root_path,
info_prefix,
version='v1.0-trainval',
max_sweeps=10,
max_radar_sweeps=10):
"""Create info file of nuscene dataset.
Given the raw data, generate its related info file in pkl format.
Args:
root_path (str): Path of the data root.
info_prefix (str): Prefix of the info file to be generated.
version (str): Version of the data.
Default: 'v1.0-trainval'
max_sweeps (int): Max number of sweeps.
Default: 10
max_radar_sweeps (int): Max number of radar sweeps.
Default: 10
"""
from nuscenes.nuscenes import NuScenes
nusc = NuScenes(version=version, dataroot=root_path, verbose=True)
from nuscenes.utils import splits
available_vers = ['v1.0-trainval', 'v1.0-test', 'v1.0-mini']
assert version in available_vers
if version == 'v1.0-trainval':
train_scenes = splits.train
val_scenes = splits.val
elif version == 'v1.0-test':
train_scenes = splits.test
val_scenes = []
elif version == 'v1.0-mini':
train_scenes = splits.mini_train
val_scenes = splits.mini_val
else:
raise ValueError('unknown')
# filter existing scenes.
available_scenes = get_available_scenes(nusc)
available_scene_names = [s['name'] for s in available_scenes]
train_scenes = list(
filter(lambda x: x in available_scene_names, train_scenes))
val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
train_scenes = set([
available_scenes[available_scene_names.index(s)]['token']
for s in train_scenes
])
val_scenes = set([
available_scenes[available_scene_names.index(s)]['token']
for s in val_scenes
])
test = 'test' in version
if test:
print('test scene: {}'.format(len(train_scenes)))
else:
print('train scene: {}, val scene: {}'.format(
len(train_scenes), len(val_scenes)))
train_nusc_infos, val_nusc_infos = _fill_trainval_infos(
nusc, train_scenes, val_scenes, test, max_sweeps=max_sweeps, max_radar_sweeps=max_radar_sweeps)
metadata = dict(version=version)
if test:
print('test sample: {}'.format(len(train_nusc_infos)))
data = dict(infos=train_nusc_infos, metadata=metadata)
info_path = osp.join(root_path,
'{}_infos_test_radar.pkl'.format(info_prefix))
mmcv.dump(data, info_path)
else:
print(info_prefix)
print('train sample: {}, val sample: {}'.format(
len(train_nusc_infos), len(val_nusc_infos)))
data = dict(infos=train_nusc_infos, metadata=metadata)
info_path = osp.join(info_prefix,
'{}_infos_train.pkl'.format(info_prefix))
mmcv.dump(data, info_path)
data['infos'] = val_nusc_infos
info_val_path = osp.join(info_prefix,
'{}_infos_val.pkl'.format(info_prefix))
mmcv.dump(data, info_val_path)
def get_available_scenes(nusc):
"""Get available scenes from the input nuscenes class.
Given the raw data, get the information of available scenes for
further info generation.
Args:
nusc (class): Dataset class in the nuScenes dataset.
Returns:
available_scenes (list[dict]): List of basic information for the
available scenes.
"""
available_scenes = []
print('total scene num: {}'.format(len(nusc.scene)))
for scene in nusc.scene:
scene_token = scene['token']
scene_rec = nusc.get('scene', scene_token)
sample_rec = nusc.get('sample', scene_rec['first_sample_token'])
sd_rec = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
has_more_frames = True
scene_not_exist = False
while has_more_frames:
lidar_path, boxes, _ = nusc.get_sample_data(sd_rec['token'])
lidar_path = str(lidar_path)
if os.getcwd() in lidar_path:
# path from lyftdataset is absolute path
lidar_path = lidar_path.split(f'{os.getcwd()}/')[-1]
# relative path
if not mmcv.is_filepath(lidar_path):
scene_not_exist = True
break
else:
break
if scene_not_exist:
continue
available_scenes.append(scene)
print('exist scene num: {}'.format(len(available_scenes)))
return available_scenes
def _fill_trainval_infos(nusc,
train_scenes,
val_scenes,
test=False,
max_sweeps=10,
max_radar_sweeps=10):
"""Generate the train/val infos from the raw data.
Args:
nusc (:obj:`NuScenes`): Dataset class in the nuScenes dataset.
train_scenes (list[str]): Basic information of training scenes.
val_scenes (list[str]): Basic information of validation scenes.
test (bool): Whether use the test mode. In the test mode, no
annotations can be accessed. Default: False.
max_sweeps (int): Max number of sweeps. Default: 10.
max_radar_sweeps (int): Max number of radar sweeps. Default: 10.
Returns:
tuple[list[dict]]: Information of training set and validation set
that will be saved to the info file.
"""
train_nusc_infos = []
val_nusc_infos = []
token2idx = {}
i_ = 0
for sample in mmcv.track_iter_progress(nusc.sample):
# i_ += 1
# if i_ > 6:
# break
lidar_token = sample['data']['LIDAR_TOP']
sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
cs_record = nusc.get('calibrated_sensor',
sd_rec['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
lidar_path, boxes, _ = nusc.get_sample_data(lidar_token)
mmcv.check_file_exist(lidar_path)
info = {
'lidar_path': lidar_path,
'token': sample['token'],
'sweeps': [],
'cams': dict(),
'radars': dict(),
'lidar2ego_translation': cs_record['translation'],
'lidar2ego_rotation': cs_record['rotation'],
'ego2global_translation': pose_record['translation'],
'ego2global_rotation': pose_record['rotation'],
'timestamp': sample['timestamp'],
'prev_token': sample['prev']
}
l2e_r = info['lidar2ego_rotation']
l2e_t = info['lidar2ego_translation']
e2g_r = info['ego2global_rotation']
e2g_t = info['ego2global_translation']
l2e_r_mat = Quaternion(l2e_r).rotation_matrix
e2g_r_mat = Quaternion(e2g_r).rotation_matrix
# obtain 6 image's information per frame
camera_types = [
'CAM_FRONT',
'CAM_FRONT_RIGHT',
'CAM_FRONT_LEFT',
'CAM_BACK',
'CAM_BACK_LEFT',
'CAM_BACK_RIGHT',
]
for cam in camera_types:
cam_token = sample['data'][cam]
cam_path, _, cam_intrinsic = nusc.get_sample_data(cam_token)
cam_info = obtain_sensor2top(nusc, cam_token, l2e_t, l2e_r_mat,
e2g_t, e2g_r_mat, cam)
cam_info.update(cam_intrinsic=cam_intrinsic)
info['cams'].update({cam: cam_info})
radar_names = ['RADAR_FRONT', 'RADAR_FRONT_LEFT', 'RADAR_FRONT_RIGHT', 'RADAR_BACK_LEFT', 'RADAR_BACK_RIGHT']
for radar_name in radar_names:
radar_token = sample['data'][radar_name]
radar_rec = nusc.get('sample_data', radar_token)
sweeps = []
while len(sweeps) < max_radar_sweeps:
if not radar_rec['prev'] == '':
radar_path, _, radar_intrin = nusc.get_sample_data(radar_token)
radar_info = obtain_sensor2top(nusc, radar_token, l2e_t, l2e_r_mat,
e2g_t, e2g_r_mat, radar_name)
sweeps.append(radar_info)
radar_token = radar_rec['prev']
radar_rec = nusc.get('sample_data', radar_token)
else:
radar_path, _, radar_intrin = nusc.get_sample_data(radar_token)
radar_info = obtain_sensor2top(nusc, radar_token, l2e_t, l2e_r_mat,
e2g_t, e2g_r_mat, radar_name)
sweeps.append(radar_info)
info['radars'].update({radar_name: sweeps})
# obtain sweeps for a single key-frame
sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
sweeps = []
while len(sweeps) < max_sweeps:
if not sd_rec['prev'] == '':
sweep = obtain_sensor2top(nusc, sd_rec['prev'], l2e_t,
l2e_r_mat, e2g_t, e2g_r_mat, 'lidar')
sweeps.append(sweep)
sd_rec = nusc.get('sample_data', sd_rec['prev'])
else:
break
info['sweeps'] = sweeps
# obtain annotation
if not test:
annotations = [
nusc.get('sample_annotation', token)
for token in sample['anns']
]
locs = np.array([b.center for b in boxes]).reshape(-1, 3)
dims = np.array([b.wlh for b in boxes]).reshape(-1, 3)
rots = np.array([b.orientation.yaw_pitch_roll[0]
for b in boxes]).reshape(-1, 1)
velocity = np.array(
[nusc.box_velocity(token)[:2] for token in sample['anns']])
valid_flag = np.array(
[(anno['num_lidar_pts'] + anno['num_radar_pts']) > 0
for anno in annotations],
dtype=bool).reshape(-1)
# convert velo from global to lidar
for i in range(len(boxes)):
velo = np.array([*velocity[i], 0.0])
velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(
l2e_r_mat).T
velocity[i] = velo[:2]
names = [b.name for b in boxes]
for i in range(len(names)):
if names[i] in NuScenesDataset.NameMapping:
names[i] = NuScenesDataset.NameMapping[names[i]]
names = np.array(names)
# we need to convert rot to SECOND format.
gt_boxes = np.concatenate([locs, dims, -rots - np.pi / 2], axis=1)
assert len(gt_boxes) == len(
annotations), f'{len(gt_boxes)}, {len(annotations)}'
info['gt_boxes'] = gt_boxes
info['gt_names'] = names
info['gt_velocity'] = velocity.reshape(-1, 2)
info['num_lidar_pts'] = np.array(
[a['num_lidar_pts'] for a in annotations])
info['num_radar_pts'] = np.array(
[a['num_radar_pts'] for a in annotations])
info['valid_flag'] = valid_flag
if sample['scene_token'] in train_scenes:
train_nusc_infos.append(info)
token2idx[info['token']] = ('train', len(train_nusc_infos) - 1)
else:
val_nusc_infos.append(info)
token2idx[info['token']] = ('val', len(val_nusc_infos) - 1)
for info in train_nusc_infos:
prev_token = info['prev_token']
if prev_token == '':
info['prev'] = -1
else:
prev_set, prev_idx = token2idx[prev_token]
assert prev_set == 'train'
info['prev'] = prev_idx
for info in val_nusc_infos:
prev_token = info['prev_token']
if prev_token == '':
info['prev'] = -1
else:
prev_set, prev_idx = token2idx[prev_token]
assert prev_set == 'val'
info['prev'] = prev_idx
return train_nusc_infos, val_nusc_infos
def obtain_sensor2top(nusc,
sensor_token,
l2e_t,
l2e_r_mat,
e2g_t,
e2g_r_mat,
sensor_type='lidar'):
"""Obtain the info with RT matric from general sensor to Top LiDAR.
Args:
nusc (class): Dataset class in the nuScenes dataset.
sensor_token (str): Sample data token corresponding to the
specific sensor type.
l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3).
l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego
in shape (3, 3).
e2g_t (np.ndarray): Translation from ego to global in shape (1, 3).
e2g_r_mat (np.ndarray): Rotation matrix from ego to global
in shape (3, 3).
sensor_type (str): Sensor to calibrate. Default: 'lidar'.
Returns:
sweep (dict): Sweep information after transformation.
"""
sd_rec = nusc.get('sample_data', sensor_token)
cs_record = nusc.get('calibrated_sensor',
sd_rec['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
data_path = str(nusc.get_sample_data_path(sd_rec['token']))
if os.getcwd() in data_path: # path from lyftdataset is absolute path
data_path = data_path.split(f'{os.getcwd()}/')[-1] # relative path
sweep = {
'data_path': data_path,
'type': sensor_type,
'sample_data_token': sd_rec['token'],
'sensor2ego_translation': cs_record['translation'],
'sensor2ego_rotation': cs_record['rotation'],
'ego2global_translation': pose_record['translation'],
'ego2global_rotation': pose_record['rotation'],
'timestamp': sd_rec['timestamp']
}
l2e_r_s = sweep['sensor2ego_rotation']
l2e_t_s = sweep['sensor2ego_translation']
e2g_r_s = sweep['ego2global_rotation']
e2g_t_s = sweep['ego2global_translation']
# obtain the RT from sensor to Top LiDAR
# sweep->ego->global->ego'->lidar
l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix
e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix
R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
T -= e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
) + l2e_t @ np.linalg.inv(l2e_r_mat).T
sweep['sensor2lidar_rotation'] = R.T # points @ R.T + T
sweep['sensor2lidar_translation'] = T
return sweep
def export_2d_annotation(root_path, info_path, version, mono3d=True):
"""Export 2d annotation from the info file and raw data.
Args:
root_path (str): Root path of the raw data.
info_path (str): Path of the info file.
version (str): Dataset version.
mono3d (bool): Whether to export mono3d annotation. Default: True.
"""
# get bbox annotations for camera
camera_types = [
'CAM_FRONT',
'CAM_FRONT_RIGHT',
'CAM_FRONT_LEFT',
'CAM_BACK',
'CAM_BACK_LEFT',
'CAM_BACK_RIGHT',
]
nusc_infos = mmcv.load(info_path)['infos']
nusc = NuScenes(version=version, dataroot=root_path, verbose=True)
# info_2d_list = []
cat2Ids = [
dict(id=nus_categories.index(cat_name), name=cat_name)
for cat_name in nus_categories
]
coco_ann_id = 0
coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids)
for info in mmcv.track_iter_progress(nusc_infos):
for cam in camera_types:
cam_info = info['cams'][cam]
coco_infos = get_2d_boxes(
nusc,
cam_info['sample_data_token'],
visibilities=['', '1', '2', '3', '4'],
mono3d=mono3d)
(height, width, _) = mmcv.imread(cam_info['data_path']).shape
coco_2d_dict['images'].append(
dict(
file_name=cam_info['data_path'].split('data/nuscenes/')
[-1],
id=cam_info['sample_data_token'],
token=info['token'],
cam2ego_rotation=cam_info['sensor2ego_rotation'],
cam2ego_translation=cam_info['sensor2ego_translation'],
ego2global_rotation=info['ego2global_rotation'],
ego2global_translation=info['ego2global_translation'],
cam_intrinsic=cam_info['cam_intrinsic'],
width=width,
height=height))
for coco_info in coco_infos:
if coco_info is None:
continue
# add an empty key for coco format
coco_info['segmentation'] = []
coco_info['id'] = coco_ann_id
coco_2d_dict['annotations'].append(coco_info)
coco_ann_id += 1
if mono3d:
json_prefix = f'{info_path[:-4]}_mono3d'
else:
json_prefix = f'{info_path[:-4]}'
mmcv.dump(coco_2d_dict, f'{json_prefix}.coco.json')
def get_2d_boxes(nusc,
sample_data_token: str,
visibilities: List[str],
mono3d=True):
"""Get the 2D annotation records for a given `sample_data_token`.
Args:
sample_data_token (str): Sample data token belonging to a camera \
keyframe.
visibilities (list[str]): Visibility filter.
mono3d (bool): Whether to get boxes with mono3d annotation.
Return:
list[dict]: List of 2D annotation record that belongs to the input
`sample_data_token`.
"""
# Get the sample data and the sample corresponding to that sample data.
sd_rec = nusc.get('sample_data', sample_data_token)
assert sd_rec[
'sensor_modality'] == 'camera', 'Error: get_2d_boxes only works' \
' for camera sample_data!'
if not sd_rec['is_key_frame']:
raise ValueError(
'The 2D re-projections are available only for keyframes.')
s_rec = nusc.get('sample', sd_rec['sample_token'])
# Get the calibrated sensor and ego pose
# record to get the transformation matrices.
cs_rec = nusc.get('calibrated_sensor', sd_rec['calibrated_sensor_token'])
pose_rec = nusc.get('ego_pose', sd_rec['ego_pose_token'])
camera_intrinsic = np.array(cs_rec['camera_intrinsic'])
# Get all the annotation with the specified visibilties.
ann_recs = [
nusc.get('sample_annotation', token) for token in s_rec['anns']
]
ann_recs = [
ann_rec for ann_rec in ann_recs
if (ann_rec['visibility_token'] in visibilities)
]
repro_recs = []
for ann_rec in ann_recs:
# Augment sample_annotation with token information.
ann_rec['sample_annotation_token'] = ann_rec['token']
ann_rec['sample_data_token'] = sample_data_token
# Get the box in global coordinates.
box = nusc.get_box(ann_rec['token'])
# Move them to the ego-pose frame.
box.translate(-np.array(pose_rec['translation']))
box.rotate(Quaternion(pose_rec['rotation']).inverse)
# Move them to the calibrated sensor frame.
box.translate(-np.array(cs_rec['translation']))
box.rotate(Quaternion(cs_rec['rotation']).inverse)
# Filter out the corners that are not in front of the calibrated
# sensor.
corners_3d = box.corners()
in_front = np.argwhere(corners_3d[2, :] > 0).flatten()
corners_3d = corners_3d[:, in_front]
# Project 3d box to 2d.
corner_coords = view_points(corners_3d, camera_intrinsic,
True).T[:, :2].tolist()
# Keep only corners that fall within the image.
final_coords = post_process_coords(corner_coords)
# Skip if the convex hull of the re-projected corners
# does not intersect the image canvas.
if final_coords is None:
continue
else:
min_x, min_y, max_x, max_y = final_coords
# Generate dictionary record to be included in the .json file.
repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y,
sample_data_token, sd_rec['filename'])
# If mono3d=True, add 3D annotations in camera coordinates
if mono3d and (repro_rec is not None):
loc = box.center.tolist()
dim = box.wlh.tolist()
rot = [box.orientation.yaw_pitch_roll[0]]
global_velo2d = nusc.box_velocity(box.token)[:2]
global_velo3d = np.array([*global_velo2d, 0.0])
e2g_r_mat = Quaternion(pose_rec['rotation']).rotation_matrix
c2e_r_mat = Quaternion(cs_rec['rotation']).rotation_matrix
cam_velo3d = global_velo3d @ np.linalg.inv(
e2g_r_mat).T @ np.linalg.inv(c2e_r_mat).T
velo = cam_velo3d[0::2].tolist()
repro_rec['bbox_cam3d'] = loc + dim + rot
repro_rec['velo_cam3d'] = velo
center3d = np.array(loc).reshape([1, 3])
center2d = points_cam2img(
center3d, camera_intrinsic, with_depth=True)
repro_rec['center2d'] = center2d.squeeze().tolist()
# normalized center2D + depth
# if samples with depth < 0 will be removed
if repro_rec['center2d'][2] <= 0:
continue
ann_token = nusc.get('sample_annotation',
box.token)['attribute_tokens']
if len(ann_token) == 0:
attr_name = 'None'
else:
attr_name = nusc.get('attribute', ann_token[0])['name']
attr_id = nus_attributes.index(attr_name)
repro_rec['attribute_name'] = attr_name
repro_rec['attribute_id'] = attr_id
repro_recs.append(repro_rec)
return repro_recs
def post_process_coords(
corner_coords: List, imsize: Tuple[int, int] = (1600, 900)
) -> Union[Tuple[float, float, float, float], None]:
"""Get the intersection of the convex hull of the reprojected bbox corners
and the image canvas, return None if no intersection.
Args:
corner_coords (list[int]): Corner coordinates of reprojected
bounding box.
imsize (tuple[int]): Size of the image canvas.
Return:
tuple [float]: Intersection of the convex hull of the 2D box
corners and the image canvas.
"""
polygon_from_2d_box = MultiPoint(corner_coords).convex_hull
img_canvas = box(0, 0, imsize[0], imsize[1])
if polygon_from_2d_box.intersects(img_canvas):
img_intersection = polygon_from_2d_box.intersection(img_canvas)
intersection_coords = np.array(
[coord for coord in img_intersection.exterior.coords])
min_x = min(intersection_coords[:, 0])
min_y = min(intersection_coords[:, 1])
max_x = max(intersection_coords[:, 0])
max_y = max(intersection_coords[:, 1])
return min_x, min_y, max_x, max_y
else:
return None
def generate_record(ann_rec: dict, x1: float, y1: float, x2: float, y2: float,
sample_data_token: str, filename: str) -> OrderedDict:
"""Generate one 2D annotation record given various informations on top of
the 2D bounding box coordinates.
Args:
ann_rec (dict): Original 3d annotation record.
x1 (float): Minimum value of the x coordinate.
y1 (float): Minimum value of the y coordinate.
x2 (float): Maximum value of the x coordinate.
y2 (float): Maximum value of the y coordinate.
sample_data_token (str): Sample data token.
filename (str):The corresponding image file where the annotation
is present.
Returns:
dict: A sample 2D annotation record.
- file_name (str): flie name
- image_id (str): sample data token
- area (float): 2d box area
- category_name (str): category name
- category_id (int): category id
- bbox (list[float]): left x, top y, dx, dy of 2d box
- iscrowd (int): whether the area is crowd
"""
repro_rec = OrderedDict()
repro_rec['sample_data_token'] = sample_data_token
coco_rec = dict()
relevant_keys = [
'attribute_tokens',
'category_name',
'instance_token',
'next',
'num_lidar_pts',
'num_radar_pts',
'prev',
'sample_annotation_token',
'sample_data_token',
'visibility_token',
]
for key, value in ann_rec.items():
if key in relevant_keys:
repro_rec[key] = value
repro_rec['bbox_corners'] = [x1, y1, x2, y2]
repro_rec['filename'] = filename
coco_rec['file_name'] = filename
coco_rec['image_id'] = sample_data_token
coco_rec['area'] = (y2 - y1) * (x2 - x1)
if repro_rec['category_name'] not in NuScenesDataset.NameMapping:
return None
cat_name = NuScenesDataset.NameMapping[repro_rec['category_name']]
coco_rec['category_name'] = cat_name
coco_rec['category_id'] = nus_categories.index(cat_name)
coco_rec['bbox'] = [x1, y1, x2 - x1, y2 - y1]
coco_rec['iscrowd'] = 0
return coco_rec
if __name__ == '__main__':
create_nuscenes_infos('data/nuscenes/', 'radar_nuscenes_5sweeps')