55 lines
1.4 KiB
Python
55 lines
1.4 KiB
Python
import torch
|
|
from torch.autograd import Function
|
|
|
|
from . import ball_query_ext
|
|
|
|
|
|
class BallQuery(Function):
|
|
"""Ball Query.
|
|
|
|
Find nearby points in spherical space.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(
|
|
ctx,
|
|
min_radius: float,
|
|
max_radius: float,
|
|
sample_num: int,
|
|
xyz: torch.Tensor,
|
|
center_xyz: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""forward.
|
|
|
|
Args:
|
|
min_radius (float): minimum radius of the balls.
|
|
max_radius (float): maximum radius of the balls.
|
|
sample_num (int): maximum number of features in the balls.
|
|
xyz (Tensor): (B, N, 3) xyz coordinates of the features.
|
|
center_xyz (Tensor): (B, npoint, 3) centers of the ball query.
|
|
|
|
Returns:
|
|
Tensor: (B, npoint, nsample) tensor with the indicies of
|
|
the features that form the query balls.
|
|
"""
|
|
assert center_xyz.is_contiguous()
|
|
assert xyz.is_contiguous()
|
|
assert min_radius < max_radius
|
|
|
|
B, N, _ = xyz.size()
|
|
npoint = center_xyz.size(1)
|
|
idx = torch.cuda.IntTensor(B, npoint, sample_num).zero_()
|
|
|
|
ball_query_ext.ball_query_wrapper(
|
|
B, N, npoint, min_radius, max_radius, sample_num, center_xyz, xyz, idx
|
|
)
|
|
ctx.mark_non_differentiable(idx)
|
|
return idx
|
|
|
|
@staticmethod
|
|
def backward(ctx, a=None):
|
|
return None, None, None, None
|
|
|
|
|
|
ball_query = BallQuery.apply
|