bev-project/mmdet3d/apis/train.py

127 lines
3.8 KiB
Python

import torch
from mmcv.parallel import MMDistributedDataParallel
from mmcv.runner import (
DistSamplerSeedHook,
EpochBasedRunner,
GradientCumulativeFp16OptimizerHook,
Fp16OptimizerHook,
OptimizerHook,
build_optimizer,
build_runner,
)
from mmdet3d.runner import CustomEpochBasedRunner
from mmdet3d.utils import get_root_logger
from mmdet.core import DistEvalHook
from mmdet.datasets import build_dataloader, build_dataset, replace_ImageToTensor
def train_model(
model,
dataset,
cfg,
distributed=False,
validate=False,
timestamp=None,
):
logger = get_root_logger()
# prepare data loaders
dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
data_loaders = [
build_dataloader(
ds,
cfg.data.samples_per_gpu,
cfg.data.workers_per_gpu,
None,
dist=distributed,
seed=cfg.seed,
)
for ds in dataset
]
# put model on gpus
find_unused_parameters = cfg.get("find_unused_parameters", False)
# Sets the `find_unused_parameters` parameter in
# torch.nn.parallel.DistributedDataParallel
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
find_unused_parameters=find_unused_parameters,
)
# build runner
optimizer = build_optimizer(model, cfg.optimizer)
runner = build_runner(
cfg.runner,
default_args=dict(
model=model,
optimizer=optimizer,
work_dir=cfg.run_dir,
logger=logger,
meta={},
),
)
if hasattr(runner, "set_dataset"):
runner.set_dataset(dataset)
# an ugly workaround to make .log and .log.json filenames the same
runner.timestamp = timestamp
# fp16 setting
fp16_cfg = cfg.get("fp16", None)
if fp16_cfg is not None:
if "cumulative_iters" in cfg.optimizer_config:
optimizer_config = GradientCumulativeFp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed
)
else:
optimizer_config = Fp16OptimizerHook(
**cfg.optimizer_config, **fp16_cfg, distributed=distributed
)
elif distributed and "type" not in cfg.optimizer_config:
optimizer_config = OptimizerHook(**cfg.optimizer_config)
else:
optimizer_config = cfg.optimizer_config
# register hooks
runner.register_training_hooks(
cfg.lr_config,
optimizer_config,
cfg.checkpoint_config,
cfg.log_config,
cfg.get("momentum_config", None),
)
if isinstance(runner, EpochBasedRunner):
runner.register_hook(DistSamplerSeedHook())
# register eval hooks
if validate:
# Support batch_size > 1 in validation
val_samples_per_gpu = cfg.data.val.pop("samples_per_gpu", 1)
if val_samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.val.pipeline = replace_ImageToTensor(cfg.data.val.pipeline)
val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
val_dataloader = build_dataloader(
val_dataset,
samples_per_gpu=val_samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False,
)
eval_cfg = cfg.get("evaluation", {})
eval_cfg["by_epoch"] = cfg.runner["type"] != "IterBasedRunner"
eval_hook = DistEvalHook
runner.register_hook(eval_hook(val_dataloader, **eval_cfg))
if cfg.resume_from:
runner.resume(cfg.resume_from)
elif cfg.load_from:
runner.load_checkpoint(cfg.load_from)
runner.run(data_loaders, [("train", 1)])