bev-project/RMT-PPAD-main/examples/YOLOv8-LibTorch-CPP-Inference
bevfusion fcf3ae0ea9 Complete project state snapshot: Phase 4B RMT-PPAD Integration
🎯 Training Status:
- Current Epoch: 2/10 (13.3% complete)
- Segmentation Dice: 0.9594
- Detection IoU: 0.5742
- Training stable with 8 GPUs

🔧 Technical Achievements:
-  RMT-PPAD Transformer segmentation decoder integrated
-  Task-specific GCA architecture optimized
-  Multi-scale feature fusion (180×180, 360×360, 600×600)
-  Adaptive scale weight learning implemented
-  BEVFusion multi-task framework enhanced

📊 Performance Highlights:
- Divider segmentation: 0.9793 Dice (excellent)
- Pedestrian crossing: 0.9812 Dice (excellent)
- Stop line: 0.9812 Dice (excellent)
- Carpark area: 0.9802 Dice (excellent)
- Walkway: 0.9401 Dice (good)
- Drivable area: 0.8959 Dice (good)

🛠️ Code Changes Included:
- Enhanced BEVFusion model (bevfusion.py)
- RMT-PPAD integration modules (rmtppad_integration.py)
- Transformer segmentation head (enhanced_transformer.py)
- GCA module optimizations (gca.py)
- Configuration updates (Phase 4B configs)
- Training scripts and automation tools
- Comprehensive documentation and analysis reports

📅 Snapshot Date: Fri Nov 14 09:06:09 UTC 2025
📍 Environment: Docker container
🎯 Phase: RMT-PPAD Integration Complete
2025-11-14 09:06:09 +00:00
..
CMakeLists.txt Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
README.md Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
main.cc Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00

README.md

YOLOv8 LibTorch Inference C++

This example demonstrates how to perform inference using YOLOv8 models in C++ with LibTorch API.

Dependencies

Dependency Version
OpenCV >=4.0.0
C++ Standard >=17
Cmake >=3.18
Libtorch >=1.12.1

Usage

git clone ultralytics
cd ultralytics
pip install .
cd examples/YOLOv8-LibTorch-CPP-Inference

mkdir build
cd build
cmake ..
make
./yolov8_libtorch_inference

Exporting YOLOv8

To export YOLOv8 models:

yolo export model=yolov8s.pt imgsz=640 format=torchscript