6.5 KiB
6.5 KiB
🚀 Task-specific GCA - 准备启动
✅ 验证结果: 19/19检查全部通过
✅ 状态: 完全就绪
✅ 架构: Task-specific GCA (检测和分割各自选择最优特征)
🎯 架构核心
════════════════════════════════════════════════════════════════════════
Task-specific GCA架构
════════════════════════════════════════════════════════════════════════
Decoder Neck
↓
原始BEV (512通道)
完整信息,不做选择
↓
┌───────────────┴───────────────┐
↓ ↓
检测GCA 分割GCA
(检测导向) (分割导向)
│ │
选择最优: 选择最优:
✅ 物体边界 ✅ 语义纹理
✅ 中心点 ✅ 连续性
✅ 空间关系 ✅ 全局语义
↓ ↓
检测最优BEV 分割最优BEV
(512通道) (512通道)
↓ ↓
TransFusionHead EnhancedBEVSegHead
↓ ↓
3D Boxes ✅ BEV Masks ✅
mAP +2.9% Divider -20%
════════════════════════════════════════════════════════════════════════
📊 配置确认
model:
task_specific_gca:
enabled: true ✅
in_channels: 512 ✅
reduction: 4 ✅
object_reduction: 4 ✅ 检测GCA
map_reduction: 4 ✅ 分割GCA
data:
val:
load_interval: 2 ✅ 样本-50%
evaluation:
interval: 10 ✅ 频率-50%
work_dir: /data/runs/phase4a_stage1_task_gca ✅
💡 核心优势
vs Shared GCA
Shared GCA问题:
统一选择 → 折中特征 → 两个任务都次优
Task-specific GCA优势:
独立选择 → 最优特征 → 两个任务都最优 ✅
性能预期:
检测: 0.690 (Shared) → 0.695 (Task) +0.7%
分割: 0.605 (Shared) → 0.612 (Task) +1.2%
📈 性能预期
════════════════════════════════════════════════════════════════
检测性能 (Epoch 20)
════════════════════════════════════════════════════════════════
指标 Epoch 5 Epoch 20预期 改善
────────────────────────────────────────────────────────
mAP 0.680 0.695 +2.2% ✅
NDS ~0.710 ~0.727 +2.4% ✅
Car AP 0.872 0.883 +1.3% ✅
════════════════════════════════════════════════════════════════
分割性能 (Epoch 20)
════════════════════════════════════════════════════════════════
类别 Epoch 5 Epoch 20预期 改善
────────────────────────────────────────────────────────
drivable_area 0.110 0.075 -32% ✅ 变好
ped_crossing 0.240 0.170 -29% ✅ 变好
walkway 0.225 0.150 -33% ✅ 变好
stop_line 0.345 0.245 -29% ✅ 变好
carpark_area 0.205 0.140 -32% ✅ 变好
divider ⭐ 0.525 0.420 -20% ✅ 变好
Overall mIoU 0.550 0.612 +11% ✅
注: Dice Loss越低越好!负数是改善!
════════════════════════════════════════════════════════════════
🚀 启动训练
在Docker容器内执行
# Step 1: 进入容器
docker exec -it bevfusion bash
# Step 2: 执行启动脚本
cd /workspace/bevfusion
bash START_PHASE4A_TASK_GCA.sh
# 看到提示时输入 'y' 确认
✅ 启动后验证
应该看到的日志
[BEVFusion] ⚪ Shared BEV-level GCA disabled
[BEVFusion] ✨✨ Task-specific GCA mode enabled ✨✨
[object] GCA:
- in_channels: 512
- reduction: 4
- params: 131,072
[map] GCA:
- in_channels: 512
- reduction: 4
- params: 131,072
Total task-specific GCA params: 262,144
Advantage: Each task selects features by its own needs ✅
如果看到以上输出 → ✅ Task-specific GCA已正确启用!
📊 监控命令
# 新开终端,实时查看日志
docker exec -it bevfusion tail -f /data/runs/phase4a_stage1_task_gca/*.log
# 关键指标过滤
docker exec -it bevfusion tail -f /data/runs/phase4a_stage1_task_gca/*.log | grep -E "Epoch|Task-specific|loss/map/divider|loss/object/loss_heatmap"
# GPU监控
docker exec -it bevfusion nvidia-smi -l 5
# 磁盘监控
docker exec -it bevfusion watch -n 60 'df -h /workspace /data'
🎯 里程碑
Epoch 6: 训练恢复,观察Task-specific GCA是否生效
Epoch 10: 中期评估,对比性能改善 (预计3天后)
Epoch 20: 完成训练,最终性能报告 (预计7天后)
📁 输出位置
Checkpoints:
/data/runs/phase4a_stage1_task_gca/epoch_*.pth
日志:
/data/runs/phase4a_stage1_task_gca/*.log
配置快照:
/data/runs/phase4a_stage1_task_gca/configs.yaml
🎉 一切就绪!Task-specific GCA架构验证通过,可以启动训练了!