6.6 KiB
6.6 KiB
Phase 3 Epoch 23 Baseline性能报告
Checkpoint: runs/enhanced_from_epoch19/epoch_23.pth
配置: EnhancedBEVSegmentationHead, 400×400分辨率, 2层Decoder
数据来源: 训练日志validation结果
生成时间: 2025-10-30
📊 3D检测性能 (Epoch 23)
总体指标
NDS (nuScenes Detection Score): 0.6941 ⭐ 优秀
mAP (mean Average Precision): 0.6446 ⭐ 优秀
错误指标:
mATE (Translation Error): 0.2829 m
mASE (Scale Error): 0.2561
mAOE (Orientation Error): 0.3098 rad
mAVE (Velocity Error): 0.2468 m/s
mAAE (Attribute Error): 0.1869
各类别AP (Average Precision)
Car (最重要类别)
AP @0.5m: 0.7662
AP @1.0m: 0.8664
AP @2.0m: 0.8926
AP @4.0m: 0.9039 ⭐ 优秀
Errors:
Translation: 0.1853 m
Scale: 0.1534
Orientation: 0.0594 rad
Velocity: 0.2523 m/s
Attribute: 0.1881
Pedestrian
AP @0.5m: 0.8240
AP @1.0m: 0.8366
AP @2.0m: 0.8465
AP @4.0m: 0.8579 ⭐ 优秀
Errors:
Translation: 0.1326 m
Scale: 0.2875
Orientation: 0.3548 rad
Velocity: 0.2076 m/s
Attribute: 0.0918
Truck
AP @0.5m: 0.3965
AP @1.0m: 0.5694
AP @2.0m: 0.6640
AP @4.0m: 0.7101
Errors:
Translation: 0.3305 m
Scale: 0.1835
Orientation: 0.0617 rad
Velocity: 0.2344 m/s
Attribute: 0.2097
Bus
AP @0.5m: 0.4871
AP @1.0m: 0.7293
AP @2.0m: 0.8429
AP @4.0m: 0.8612 ⭐ 优秀
Errors:
Translation: 0.3330 m
Scale: 0.1841
Orientation: 0.0446 rad
Velocity: 0.4485 m/s
Attribute: 0.2647
Construction Vehicle (困难类别)
AP @0.5m: 0.0386 ⚠️ 低
AP @1.0m: 0.2014
AP @2.0m: 0.3661
AP @4.0m: 0.4439
Errors:
Translation: 0.7056 m ⚠️ 高
Scale: 0.4520 ⚠️ 高
Orientation: 0.9092 rad ⚠️ 高
Velocity: 0.1110 m/s
Attribute: 0.3167
Trailer
AP @0.5m: 0.1565
AP @1.0m: 0.3713
AP @2.0m: 0.5459
AP @4.0m: 0.6612
Errors:
Translation: 0.4756 m
Scale: 0.2077
Orientation: 0.6311 rad
Velocity: 0.2159 m/s
Attribute: 0.1602
Barrier
AP @0.5m: 0.5786
AP @1.0m: 0.6772
AP @2.0m: 0.7162
AP @4.0m: 0.7304
Errors:
Translation: 0.1882 m
Scale: 0.2790
Orientation: 0.0505 rad
Motorcycle
AP @0.5m: 0.6062
AP @1.0m: 0.7315
AP @2.0m: 0.7599
AP @4.0m: 0.7687
Errors:
Translation: 0.1917 m
Scale: 0.2397
Orientation: 0.2711 rad
Velocity: 0.3278 m/s
Attribute: 0.2569
Bicycle
AP @0.5m: 0.5482
AP @1.0m: 0.5816
AP @2.0m: 0.5883
AP @4.0m: 0.6018
Errors:
Translation: 0.1643 m
Scale: 0.2557
Orientation: 0.4058 rad
Velocity: 0.1771 m/s
Attribute: 0.0071
Traffic Cone
AP @0.5m: 0.7435
AP @1.0m: 0.7510
AP @2.0m: 0.7676
AP @4.0m: 0.7935
Errors:
Translation: 0.1218 m
Scale: 0.3181
📊 BEV分割性能 (Epoch 23)
总体指标
mean IoU @max: 0.4130 (41.3%)
各类别IoU @max (最佳阈值)
Drivable Area (最大类别)
IoU @max: 0.7063 ⭐ 优秀
不同阈值下的IoU:
@0.35: 0.7045
@0.40: 0.7063
@0.45: 0.6964
@0.50: 0.6770
@0.55: 0.6504
@0.60: 0.6201
@0.65: 0.5880
Pedestrian Crossing
IoU @max: 0.3931
不同阈值:
@0.35: 0.3931
@0.40: 0.3700
@0.45: 0.3266
@0.50: 0.2747
@0.55: 0.2212
@0.60: 0.1725
@0.65: 0.1292
Walkway
IoU @max: 0.5278 ✅ 良好
不同阈值:
@0.35: 0.5278
@0.40: 0.5189
@0.45: 0.4948
@0.50: 0.4619
@0.55: 0.4243
@0.60: 0.3853
@0.65: 0.3450
Stop Line (关键改进目标)
IoU @max: 0.2657 ⚠️ 需大幅提升
不同阈值:
@0.35: 0.2657
@0.40: 0.2245
@0.45: 0.1787
@0.50: 0.1372
@0.55: 0.1018
@0.60: 0.0732
@0.65: 0.0506
问题: 细线特征,0.3m分辨率不足
Carpark Area
IoU @max: 0.3948
不同阈值:
@0.35: 0.3948
@0.40: 0.3758
@0.45: 0.3492
@0.50: 0.3193
@0.55: 0.2877
@0.60: 0.2559
@0.65: 0.2230
Divider (关键改进目标)
IoU @max: 0.1903 ⚠️ 需大幅提升
不同阈值:
@0.35: 0.1903
@0.40: 0.1361
@0.45: 0.0856
@0.50: 0.0470
@0.55: 0.0222
@0.60: 0.0090
@0.65: 0.0029
问题: 最细线特征,0.3m分辨率严重不足
🎯 Phase 3性能总结
优势 ✅
3D检测:
- NDS 0.6941 (行业领先)
- Car, Pedestrian, Motorcycle, Traffic Cone AP高
BEV分割:
- Drivable Area 0.7063 (优秀)
- Walkway 0.5278 (良好)
弱点 ⚠️
3D检测:
- Construction Vehicle AP低 (0.04-0.44)
- Trailer AP中等 (0.16-0.66)
BEV分割:
- Stop Line IoU仅0.2657 (目标0.35+)
- Divider IoU仅0.1903 (目标0.28+)
- 整体mIoU 0.4130 (目标0.48+)
根本原因: 0.3m分辨率对细线类别不够
🎯 Stage 1改进目标
基于Epoch 23 baseline,Stage 1 (600×600)的目标:
BEV分割改进目标
Stop Line IoU:
Epoch 23: 0.2657
目标: 0.35+ (+31%)
策略: 分辨率提升 + 4层Decoder + Deep Supervision
Divider IoU:
Epoch 23: 0.1903
目标: 0.28+ (+47%)
策略: 同上
整体mIoU:
Epoch 23: 0.4130
目标: 0.48+ (+16%)
3D检测目标
NDS: 保持0.69+ (不下降)
mAP: 保持0.64+ (不下降)
理想: 小幅提升
📋 Epoch 1评估checklist
对比指标
3D检测 (vs Epoch 23):
- NDS: ? vs 0.6941
- mAP: ? vs 0.6446
- 各类别AP变化
BEV分割 (vs Epoch 23):
- mIoU: ? vs 0.4130
- Drivable Area: ? vs 0.7063
- Ped Crossing: ? vs 0.3931
- Walkway: ? vs 0.5278
- Stop Line: ? vs 0.2657 ⭐ 关注
- Carpark: ? vs 0.3948
- Divider: ? vs 0.1903 ⭐ 关注
改进归因
- 分辨率提升的贡献
- Deep Supervision的贡献
- Dice Loss的贡献
- 4层Decoder的贡献
📊 预期性能对比表
| 指标 | Epoch 23 (Phase 3) | Epoch 1目标 | Epoch 10目标 |
|---|---|---|---|
| 3D检测 | |||
| NDS | 0.6941 | 0.69+ | 0.69+ |
| mAP | 0.6446 | 0.64+ | 0.64+ |
| BEV分割 | |||
| mIoU | 0.4130 | 0.44+ | 0.48+ |
| Drivable | 0.7063 | 0.71+ | 0.72+ |
| Ped Cross | 0.3931 | 0.42+ | 0.45+ |
| Walkway | 0.5278 | 0.54+ | 0.56+ |
| Stop Line ⭐ | 0.2657 | 0.30+ | 0.35+ |
| Carpark | 0.3948 | 0.42+ | 0.45+ |
| Divider ⭐ | 0.1903 | 0.22+ | 0.28+ |
⏭️ 下一步
立即 (已完成)
- ✅ 提取Epoch 23 baseline数据
- ✅ 生成详细性能报告
Epoch 1后 (~21小时)
- ⏸️ 评估epoch_1.pth
- ⏸️ 对比Epoch 23 baseline
- ⏸️ 量化初步改进
Epoch 5后 (~4.5天)
- ⏸️ 评估epoch_5.pth
- ⏸️ 评估是否达到中期目标
Stage 1完成 (~9天)
- ⏸️ 最终性能评估
- ⏸️ 与Epoch 23全面对比
- ⏸️ 生成改进归因分析
Baseline已建立!可用于后续所有对比分析。