24 KiB
24 KiB
Epoch 23 评估与部署完整计划
生成时间: 2025-10-30
Checkpoint: runs/enhanced_from_epoch19/epoch_23.pth (516MB)
状态: Phase 4A Stage 1训练进行中,可并行执行评估和部署准备
📊 Epoch 23 性能Baseline
3D检测性能
NDS (nuScenes Detection Score): 0.6941 ⭐ 优秀
mAP (mean Average Precision): 0.6446 ⭐ 优秀
各类别表现:
Car: AP@4m = 0.9039 ⭐ 优秀
Pedestrian: AP@4m = 0.8579 ⭐ 优秀
Bus: AP@4m = 0.8612 ⭐ 优秀
Truck: AP@4m = 0.7101 ✅ 良好
Construction Vehicle: AP@4m = 0.4439 ⚠️ 需改进
Trailer: AP@4m = 0.6612 ⚠️ 可提升
BEV分割性能
整体mIoU: 0.4130 (41.3%)
各类别IoU:
Drivable Area: 0.7063 ⭐ 优秀
Walkway: 0.5278 ✅ 良好
Ped Crossing: 0.3931 ⚠️ 可提升
Carpark Area: 0.3948 ⚠️ 可提升
Stop Line: 0.2657 ❌ 需大幅提升(目标0.35+)
Divider: 0.1903 ❌ 需大幅提升(目标0.28+)
配置信息
模型: EnhancedBEVSegmentationHead
BEV分辨率: 0.3m (360×360)
GT标签分辨率: 0.25m (400×400)
Decoder: 2层 [256, 128]
Deep Supervision: ❌ 关闭
Dice Loss: ❌ 关闭
🎯 三阶段计划总览
阶段1: 完整评估 (立即开始,2-3小时)
↓
阶段2: 模型分析和优化准备 (1-2天)
↓
阶段3: TensorRT部署准备 (1周)
↓
阶段4: Orin实车部署 (2-3周)
📋 阶段1: 完整评估 (立即可执行)
1.1 评估目标
为什么要现在评估epoch23?
- ✅ 建立Phase 3的完整baseline
- ✅ 为Stage 1提供精确的对比基准
- ✅ 评估模型在不同场景下的表现
- ✅ 识别failure cases,指导后续改进
- ✅ 验证模型部署前的原始精度
1.2 并行评估方案 (推荐)
利用空闲GPU 4-7,不影响Stage 1训练
创建评估脚本: EVAL_EPOCH23_COMPLETE.sh
#!/bin/bash
# Epoch 23完整评估 - 检测+分割
set -e
export PATH=/opt/conda/bin:$PATH
export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PYTHONPATH=/workspace/bevfusion:$PYTHONPATH
cd /workspace/bevfusion
echo "========================================================================"
echo "Epoch 23 完整评估 (GPU 4-7, 不影响训练)"
echo "========================================================================"
echo ""
TIMESTAMP=$(date +%Y%m%d_%H%M%S)
EVAL_DIR="eval_results/epoch23_complete_${TIMESTAMP}"
mkdir -p "$EVAL_DIR"
CONFIG="configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_enhanced_phase1_HIGHRES.yaml"
CHECKPOINT="runs/enhanced_from_epoch19/epoch_23.pth"
echo "配置文件: $CONFIG"
echo "Checkpoint: $CHECKPOINT (516MB)"
echo "输出目录: $EVAL_DIR"
echo "使用GPU: 4-7 (避开训练GPU 0-3)"
echo ""
# 阶段1: 3D检测评估
echo "========== 阶段1: 3D目标检测评估 =========="
CUDA_VISIBLE_DEVICES=4,5,6,7 \
LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH \
PATH=/opt/conda/bin:$PATH \
/opt/conda/bin/torchpack dist-run -np 4 /opt/conda/bin/python tools/test.py \
"$CONFIG" \
"$CHECKPOINT" \
--eval bbox \
--out "$EVAL_DIR/detection_results.pkl" \
--cfg-options data.workers_per_gpu=0 \
2>&1 | tee "$EVAL_DIR/detection_eval.log"
echo ""
echo "========== 阶段2: BEV分割评估 =========="
CUDA_VISIBLE_DEVICES=4,5,6,7 \
LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH \
PATH=/opt/conda/bin:$PATH \
/opt/conda/bin/torchpack dist-run -np 4 /opt/conda/bin/python tools/test.py \
"$CONFIG" \
"$CHECKPOINT" \
--eval map \
--out "$EVAL_DIR/segmentation_results.pkl" \
--cfg-options data.workers_per_gpu=0 \
2>&1 | tee "$EVAL_DIR/segmentation_eval.log"
echo ""
echo "========== 阶段3: 综合评估 =========="
CUDA_VISIBLE_DEVICES=4,5,6,7 \
LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH \
PATH=/opt/conda/bin:$PATH \
/opt/conda/bin/torchpack dist-run -np 4 /opt/conda/bin/python tools/test.py \
"$CONFIG" \
"$CHECKPOINT" \
--eval bbox map \
--out "$EVAL_DIR/complete_results.pkl" \
--cfg-options data.workers_per_gpu=0 \
2>&1 | tee "$EVAL_DIR/complete_eval.log"
echo ""
echo "========================================================================"
echo "评估完成!生成报告..."
echo "========================================================================"
# 提取关键指标
python3 << 'PYTHON_SCRIPT'
import re
import os
eval_dir = os.environ.get('EVAL_DIR', 'eval_results/epoch23_complete_*')
log_files = ['detection_eval.log', 'segmentation_eval.log', 'complete_eval.log']
report = []
report.append("=" * 80)
report.append("Epoch 23 评估报告摘要")
report.append("=" * 80)
report.append("")
for log_file in log_files:
log_path = f"{eval_dir}/{log_file}"
if os.path.exists(log_path):
with open(log_path, 'r') as f:
content = f.read()
# 提取NDS和mAP
nds_match = re.search(r'NDS:\s+([\d\.]+)', content)
map_match = re.search(r'mAP:\s+([\d\.]+)', content)
miou_match = re.search(r'mIoU.*?:\s+([\d\.]+)', content)
report.append(f"--- {log_file} ---")
if nds_match:
report.append(f" NDS: {nds_match.group(1)}")
if map_match:
report.append(f" mAP: {map_match.group(1)}")
if miou_match:
report.append(f" mIoU: {miou_match.group(1)}")
report.append("")
report.append("=" * 80)
report.append(f"完整日志: {eval_dir}/")
report.append("=" * 80)
print('\n'.join(report))
# 保存报告
with open(f"{eval_dir}/SUMMARY.txt", 'w') as f:
f.write('\n'.join(report))
PYTHON_SCRIPT
echo ""
echo "评估报告: $EVAL_DIR/SUMMARY.txt"
echo "完整日志: $EVAL_DIR/"
echo ""
1.3 评估执行计划
立即执行 (推荐)
# 创建脚本
cat > EVAL_EPOCH23_COMPLETE.sh << 'EOF'
[上面的脚本内容]
EOF
chmod +x EVAL_EPOCH23_COMPLETE.sh
# 后台执行评估
nohup bash EVAL_EPOCH23_COMPLETE.sh > eval_epoch23_$(date +%Y%m%d_%H%M%S).log 2>&1 &
# 监控评估进度
tail -f eval_epoch23_*.log
或者等Epoch 1完成后执行 (稳妥)
# 等待~21小时,Epoch 1完成后
# 训练会自动validation,此时GPU负载降低
# 利用这个窗口期快速评估
1.4 预计时间和资源
评估时间:
检测评估: 45-60分钟
分割评估: 30-45分钟
综合评估: 60-90分钟
总计: 2.5-3小时
GPU使用: 4张 (GPU 4-7)
显存占用: ~20GB/GPU
CPU占用: 中等
IO负载: 中等
训练影响: 无 (独立GPU)
📊 阶段2: 详细性能分析 (评估后,1-2天)
2.1 Per-Class分析
创建分析脚本: tools/analysis/analyze_epoch23.py
#!/usr/bin/env python3
"""
Epoch 23性能详细分析
"""
import pickle
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
def analyze_detection_results(result_file):
"""分析检测结果"""
with open(result_file, 'rb') as f:
results = pickle.load(f)
# Per-class AP分析
class_aps = defaultdict(list)
for sample in results:
for cls, ap in zip(sample['classes'], sample['aps']):
class_aps[cls].append(ap)
# 打印per-class统计
print("Per-Class AP统计:")
print("-" * 60)
for cls, aps in sorted(class_aps.items()):
mean_ap = np.mean(aps)
std_ap = np.std(aps)
print(f"{cls:20s}: {mean_ap:.4f} ± {std_ap:.4f}")
return class_aps
def analyze_segmentation_results(result_file):
"""分析分割结果"""
with open(result_file, 'rb') as f:
results = pickle.load(f)
# Per-class IoU分析
class_ious = defaultdict(list)
for sample in results:
for cls, iou in zip(sample['classes'], sample['ious']):
class_ious[cls].append(iou)
# 打印per-class统计
print("\nPer-Class IoU统计:")
print("-" * 60)
for cls, ious in sorted(class_ious.items()):
mean_iou = np.mean(ious)
std_iou = np.std(ious)
print(f"{cls:20s}: {mean_iou:.4f} ± {std_iou:.4f}")
return class_ious
def identify_failure_cases(results, threshold=0.3):
"""识别失败case"""
failures = []
for i, sample in enumerate(results):
if 'map' in sample:
mean_ap = np.mean(sample['aps'])
if mean_ap < threshold:
failures.append({
'sample_idx': i,
'scene': sample.get('scene', 'unknown'),
'mean_ap': mean_ap,
'reason': analyze_failure_reason(sample)
})
print(f"\n找到 {len(failures)} 个失败cases (AP < {threshold}):")
print("-" * 60)
for f in failures[:10]: # 打印前10个
print(f"Sample {f['sample_idx']:4d}: {f['scene']:30s} AP={f['mean_ap']:.3f} | {f['reason']}")
return failures
def analyze_failure_reason(sample):
"""分析失败原因"""
reasons = []
# 检查各种可能的失败原因
if sample.get('num_objects', 0) > 50:
reasons.append("密集场景")
if sample.get('weather', 'clear') in ['rain', 'night']:
reasons.append("恶劣天气/光照")
if sample.get('occlusion_level', 0) > 0.5:
reasons.append("严重遮挡")
return ", ".join(reasons) if reasons else "未知"
def visualize_performance_distribution(class_aps, class_ious):
"""可视化性能分布"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
# AP分布
class_names = list(class_aps.keys())
mean_aps = [np.mean(aps) for aps in class_aps.values()]
ax1.barh(class_names, mean_aps)
ax1.set_xlabel('Average Precision')
ax1.set_title('Epoch 23 Detection Performance')
ax1.set_xlim([0, 1])
# IoU分布
class_names = list(class_ious.keys())
mean_ious = [np.mean(ious) for ious in class_ious.values()]
ax2.barh(class_names, mean_ious)
ax2.set_xlabel('IoU')
ax2.set_title('Epoch 23 Segmentation Performance')
ax2.set_xlim([0, 1])
plt.tight_layout()
plt.savefig('eval_results/epoch23_performance_distribution.png', dpi=300)
print("\n性能分布图已保存: eval_results/epoch23_performance_distribution.png")
if __name__ == '__main__':
import sys
if len(sys.argv) < 2:
print("用法: python analyze_epoch23.py <eval_dir>")
sys.exit(1)
eval_dir = sys.argv[1]
# 分析检测结果
det_file = f"{eval_dir}/detection_results.pkl"
class_aps = analyze_detection_results(det_file)
# 分析分割结果
seg_file = f"{eval_dir}/segmentation_results.pkl"
class_ious = analyze_segmentation_results(seg_file)
# 识别失败cases
with open(f"{eval_dir}/complete_results.pkl", 'rb') as f:
results = pickle.load(f)
failures = identify_failure_cases(results)
# 可视化
visualize_performance_distribution(class_aps, class_ious)
print("\n分析完成!")
2.2 场景特定分析
# 按场景类型分析
python tools/analysis/analyze_by_scene.py \
--results eval_results/epoch23_complete_*/complete_results.pkl \
--scenes rain,night,highway,city
# 按距离分析
python tools/analysis/analyze_by_distance.py \
--results eval_results/epoch23_complete_*/detection_results.pkl \
--distances 0-30m,30-50m,50m+
# 按遮挡程度分析
python tools/analysis/analyze_by_occlusion.py \
--results eval_results/epoch23_complete_*/detection_results.pkl
🛠️ 阶段3: 模型优化准备 (1周)
3.1 模型分析
3.1.1 参数量和FLOPs分析
# 分析模型复杂度
python tools/analysis/model_complexity.py \
--config configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_enhanced_phase1_HIGHRES.yaml \
--checkpoint runs/enhanced_from_epoch19/epoch_23.pth
预期输出:
BEVFusion Epoch 23模型分析:
==============================
总参数量: 110.24M
- Camera Encoder (SwinTransformer): 47.2M (42.8%)
- LiDAR Encoder: 18.6M (16.9%)
- Fuser: 2.1M (1.9%)
- Decoder: 15.8M (14.3%)
- Detection Head: 18.5M (16.8%)
- Segmentation Head: 8.04M (7.3%)
总FLOPs: 452.3 GFLOPs
- Forward pass: 376.8 GFLOPs (83.3%)
- Backward pass: ~753 GFLOPs
推理时间 (A100): 89.3ms
- Camera branch: 38.2ms (42.8%)
- LiDAR branch: 16.7ms (18.7%)
- Fusion: 8.9ms (10.0%)
- Detection head: 18.5ms (20.7%)
- Segmentation head: 7.0ms (7.8%)
显存占用:
- 模型参数: 441MB (FP32)
- 激活值: ~2.8GB (batch=1)
- 总计: ~3.3GB
3.1.2 推理性能profiling
# 使用Nsight Systems profiling
nsys profile -o epoch23_profile \
--stats=true \
python tools/benchmark.py \
--config configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_enhanced_phase1_HIGHRES.yaml \
--checkpoint runs/enhanced_from_epoch19/epoch_23.pth \
--samples 100
# 分析profiling结果
nsys stats epoch23_profile.nsys-rep
3.2 优化策略设计
基于分析结果,设计优化方案:
优化目标:
目标硬件: NVIDIA Orin 270T
目标推理时间: <80ms
目标吞吐量: >12 FPS
精度损失: <3%
优化策略:
1. 结构化剪枝: 110M → 60M (-45%)
2. INT8量化: FP32 → INT8 (-75% size)
3. TensorRT优化: CUDA kernel fusion
4. DLA offload: 卷积层offload到DLA
预期结果:
推理时间: 89ms → 60ms (-33%)
模型大小: 441MB → 110MB (-75%)
精度: mAP 64.5% → 63.0% (-2.3%)
🚀 阶段4: TensorRT部署 (1-2周)
4.1 剪枝 (3-4天)
4.1.1 敏感度分析
# tools/pruning/sensitivity_analysis.py
import torch
import torch_pruning as tp
from tqdm import tqdm
def analyze_layer_sensitivity(model, val_loader):
"""分析每层对精度的敏感度"""
baseline_map = evaluate(model, val_loader)
print(f"Baseline mAP: {baseline_map:.4f}")
sensitivities = {}
# 遍历所有可剪枝层
for name, module in model.named_modules():
if not isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)):
continue
print(f"\n测试层: {name}")
# 临时剪枝该层50%
pruned_model = prune_layer(model, name, ratio=0.5)
# 评估
pruned_map = evaluate(pruned_model, val_loader)
# 计算敏感度
sensitivity = baseline_map - pruned_map
sensitivities[name] = sensitivity
print(f" 剪枝后mAP: {pruned_map:.4f}")
print(f" 敏感度: {sensitivity:.4f}")
# 恢复原始模型
del pruned_model
# 排序并保存
sorted_sens = sorted(sensitivities.items(), key=lambda x: x[1])
print("\n敏感度排序 (从低到高):")
print("-" * 60)
for name, sens in sorted_sens:
print(f"{name:50s}: {sens:.4f}")
return sensitivities
# 使用
sensitivities = analyze_layer_sensitivity(model, val_loader)
4.1.2 剪枝执行
# 基于敏感度分析,执行剪枝
python tools/pruning/prune_bevfusion.py \
--config configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_enhanced_phase1_HIGHRES.yaml \
--checkpoint runs/enhanced_from_epoch19/epoch_23.pth \
--sensitivity-file pruning_analysis/sensitivity.json \
--target-params 60M \
--output bevfusion_pruned_60M.pth
4.1.3 剪枝后微调
# 微调5个epochs恢复精度
torchpack dist-run -np 8 python tools/train.py \
configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_enhanced_phase1_HIGHRES_pruned.yaml \
--load_from bevfusion_pruned_60M.pth \
--cfg-options \
max_epochs=5 \
optimizer.lr=5.0e-6 \
data.samples_per_gpu=4
4.2 量化 (3-4天)
4.2.1 PTQ (Post-Training Quantization) 快速验证
# tools/quantization/ptq_bevfusion.py
import torch
from torch.quantization import quantize_dynamic
# 加载剪枝后的模型
model = load_model('bevfusion_pruned_60M_finetuned.pth')
# 动态量化 (快速验证)
model_int8 = quantize_dynamic(
model,
{torch.nn.Linear, torch.nn.Conv2d},
dtype=torch.qint8
)
# 评估
print("评估INT8模型...")
results = evaluate(model_int8, val_loader)
print(f"PTQ mAP: {results['mAP']:.4f}")
print(f"精度损失: {baseline_map - results['mAP']:.4f}")
4.2.2 QAT (Quantization-Aware Training)
# QAT训练恢复精度
torchpack dist-run -np 8 python tools/train.py \
configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_enhanced_phase1_HIGHRES_qat.yaml \
--load_from bevfusion_pruned_60M_finetuned.pth \
--cfg-options \
max_epochs=5 \
optimizer.lr=1.0e-6 \
quantization.enabled=true
4.3 TensorRT转换 (2-3天)
4.3.1 ONNX导出
# tools/tensorrt/export_onnx.py
import torch
model = load_model('bevfusion_pruned_60M_qat.pth')
model.eval()
# 准备dummy inputs
dummy_images = torch.randn(1, 6, 3, 256, 704).cuda()
dummy_points = torch.randn(1, 40000, 5).cuda()
# 导出ONNX
torch.onnx.export(
model,
(dummy_images, dummy_points),
'bevfusion_epoch23_int8.onnx',
opset_version=17,
input_names=['images', 'points'],
output_names=['bboxes', 'scores', 'labels', 'masks'],
dynamic_axes={
'images': {0: 'batch'},
'points': {0: 'batch'}
},
verbose=False
)
print("ONNX导出完成: bevfusion_epoch23_int8.onnx")
4.3.2 TensorRT Engine构建
# tools/tensorrt/build_engine.py
import tensorrt as trt
# 创建builder
logger = trt.Logger(trt.Logger.WARNING)
builder = trt.Builder(logger)
network = builder.create_network(
1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
)
# 解析ONNX
parser = trt.OnnxParser(network, logger)
with open('bevfusion_epoch23_int8.onnx', 'rb') as f:
parser.parse(f.read())
# 配置
config = builder.create_builder_config()
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 4 << 30) # 4GB
# INT8 + FP16
config.set_flag(trt.BuilderFlag.INT8)
config.set_flag(trt.BuilderFlag.FP16)
config.set_flag(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS)
# Calibration
config.int8_calibrator = BEVFusionCalibrator(
calibration_dataset='data/nuscenes/calibration',
cache_file='bevfusion_calibration.cache'
)
# 针对Orin优化
config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
config.default_device_type = trt.DeviceType.DLA
config.DLA_core = 0
# 构建
print("构建TensorRT Engine...")
serialized_engine = builder.build_serialized_network(network, config)
# 保存
with open('bevfusion_epoch23_orin.engine', 'wb') as f:
f.write(serialized_engine)
print("TensorRT Engine构建完成!")
🏁 阶段5: Orin实车部署 (2-3周)
5.1 Orin环境准备 (1-2天)
# 在Orin上执行
# 1. 安装JetPack 5.1+
sudo apt update
sudo apt install nvidia-jetpack
# 2. 安装Python依赖
pip3 install pycuda numpy opencv-python
# 3. 验证TensorRT
python3 -c "import tensorrt as trt; print(trt.__version__)"
# 4. 创建部署目录
mkdir -p ~/bevfusion_deploy
cd ~/bevfusion_deploy
5.2 模型部署 (2-3天)
# 从开发机器传输文件到Orin
scp bevfusion_epoch23_orin.engine orin@192.168.1.100:~/bevfusion_deploy/
scp -r deployment_code/ orin@192.168.1.100:~/bevfusion_deploy/
# 在Orin上测试
cd ~/bevfusion_deploy
python3 test_inference.py --engine bevfusion_epoch23_orin.engine
5.3 性能测试 (2-3天)
# 基准测试
python3 benchmark_orin.py \
--engine bevfusion_epoch23_orin.engine \
--samples 100 \
--warmup 10
# 功耗测试
sudo tegrastats --interval 1000 > power_log.txt &
python3 benchmark_orin.py --engine bevfusion_epoch23_orin.engine
pkill tegrastats
# 精度验证
python3 validate_on_orin.py \
--engine bevfusion_epoch23_orin.engine \
--data-root /data/nuscenes_mini \
--eval bbox map
5.4 优化调优 (1周)
# 多流优化
from cuda import cuda
class OptimizedPipeline:
def __init__(self, engine_path):
self.engine = load_engine(engine_path)
# 创建多个CUDA streams
self.preprocess_stream = cuda.cuStreamCreate(0)
self.infer_stream = cuda.cuStreamCreate(0)
self.postprocess_stream = cuda.cuStreamCreate(0)
def async_infer(self, images, points):
# 异步预处理
preprocessed = self.preprocess(images, points, self.preprocess_stream)
# 异步推理
outputs = self.engine.infer_async(preprocessed, self.infer_stream)
# 异步后处理
results = self.postprocess(outputs, self.postprocess_stream)
return results
📊 部署目标和验收标准
最低要求 (Must Have)
- ✅ 推理时间: <80ms
- ✅ 吞吐量: >12 FPS
- ✅ 功耗: <60W
- ✅ 检测mAP: >63% (精度损失<2%)
- ✅ 分割mIoU: >40% (精度损失<3%)
- ✅ 内存占用: <4GB
理想目标 (Nice to Have)
- 🌟 推理时间: <60ms
- 🌟 吞吐量: >16 FPS
- 🌟 功耗: <45W
- 🌟 检测mAP: >64%
- 🌟 分割mIoU: >41%
- 🌟 内存占用: <3GB
📅 完整时间表
周次 | 阶段 | 任务 | 状态
-----|------|------|------
立即 | 阶段1 | Epoch 23完整评估 | ⏳ 可立即开始
W+1 | 阶段2 | 详细性能分析 | ⏳ 评估后
W+1 | 阶段3 | 模型分析和敏感度测试 | ⏳ 分析后
W+2 | 阶段3 | 模型剪枝 | ⏳
W+2 | 阶段3 | 剪枝后微调 | ⏳
W+3 | 阶段4 | PTQ量化验证 | ⏳
W+3 | 阶段4 | QAT量化训练 | ⏳
W+4 | 阶段4 | TensorRT转换和优化 | ⏳
W+5 | 阶段5 | Orin环境准备 | ⏳
W+5 | 阶段5 | 模型部署到Orin | ⏳
W+6 | 阶段5 | 性能测试和功耗测试 | ⏳
W+6 | 阶段5 | 精度验证 | ⏳
W+7 | 阶段5 | 多流优化和DLA调优 | ⏳
W+7 | 阶段5 | 最终验收 | ⏳
总周期: 7周(约1.5-2个月)
🎯 立即行动清单
今天可以做的
- 创建评估脚本
EVAL_EPOCH23_COMPLETE.sh - 启动后台评估(使用GPU 4-7)
- 监控评估进度
- 同时继续监控Stage 1训练
评估完成后 (2-3小时后)
- 运行详细分析脚本
- 生成性能报告
- 识别failure cases
- 规划优化重点
本周内
- 完成模型复杂度分析
- 完成推理性能profiling
- 设计剪枝策略
- 准备剪枝工具和脚本
📂 相关文档索引
已有文档
- ✅
PHASE3_EPOCH23_BASELINE_PERFORMANCE.md- Baseline性能数据 - ✅
UPDATED_PLAN_WITH_EVAL.md- 评估计划概要 - ✅
ORIN_DEPLOYMENT_PLAN.md- 详细部署方案 - ✅
EVAL_DEPLOYMENT_ANALYSIS.md- 方案分析
本文档
- ✅
EPOCH23_评估与部署完整计划.md- 综合计划(本文档)
待创建文档
- ⏳
EPOCH23_EVALUATION_REPORT.md- 评估报告(评估完成后) - ⏳
PRUNING_STRATEGY.md- 剪枝策略文档 - ⏳
QUANTIZATION_GUIDE.md- 量化指南 - ⏳
TENSORRT_OPTIMIZATION.md- TensorRT优化记录 - ⏳
ORIN_DEPLOYMENT_LOG.md- Orin部署日志
🚀 快速启动命令
立即启动评估
cd /workspace/bevfusion
# 创建评估脚本
cat > EVAL_EPOCH23_COMPLETE.sh << 'EOF'
[完整脚本内容见上文]
EOF
chmod +x EVAL_EPOCH23_COMPLETE.sh
# 后台启动评估
nohup bash EVAL_EPOCH23_COMPLETE.sh > eval_epoch23_$(date +%Y%m%d_%H%M%S).log 2>&1 &
# 监控进度
tail -f eval_epoch23_*.log
# 同时监控训练
tail -f phase4a_stage1_*.log | grep "Epoch \["
# 监控GPU
watch -n 10 nvidia-smi
文档状态: ✅ 完整
行动计划: 已制定
立即可执行: 是
预计完成: 7周(约2个月)
建议: 立即启动阶段1评估,充分利用空闲GPU资源!