bev-project/mmdet3d/core/utils/gaussian.py

85 lines
2.4 KiB
Python

import numpy as np
import torch
def gaussian_2d(shape, sigma=1):
"""Generate gaussian map.
Args:
shape (list[int]): Shape of the map.
sigma (float): Sigma to generate gaussian map.
Defaults to 1.
Returns:
np.ndarray: Generated gaussian map.
"""
m, n = [(ss - 1.0) / 2.0 for ss in shape]
y, x = np.ogrid[-m : m + 1, -n : n + 1]
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
h[h < np.finfo(h.dtype).eps * h.max()] = 0
return h
def draw_heatmap_gaussian(heatmap, center, radius, k=1):
"""Get gaussian masked heatmap.
Args:
heatmap (torch.Tensor): Heatmap to be masked.
center (torch.Tensor): Center coord of the heatmap.
radius (int): Radius of gausian.
K (int): Multiple of masked_gaussian. Defaults to 1.
Returns:
torch.Tensor: Masked heatmap.
"""
diameter = 2 * radius + 1
gaussian = gaussian_2d((diameter, diameter), sigma=diameter / 6)
x, y = int(center[0]), int(center[1])
height, width = heatmap.shape[0:2]
left, right = min(x, radius), min(width - x, radius + 1)
top, bottom = min(y, radius), min(height - y, radius + 1)
masked_heatmap = heatmap[y - top : y + bottom, x - left : x + right]
masked_gaussian = torch.from_numpy(
gaussian[radius - top : radius + bottom, radius - left : radius + right]
).to(heatmap.device, torch.float32)
if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
torch.max(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
return heatmap
def gaussian_radius(det_size, min_overlap=0.5):
"""Get radius of gaussian.
Args:
det_size (tuple[torch.Tensor]): Size of the detection result.
min_overlap (float): Gaussian_overlap. Defaults to 0.5.
Returns:
torch.Tensor: Computed radius.
"""
height, width = det_size
a1 = 1
b1 = height + width
c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
sq1 = torch.sqrt(b1**2 - 4 * a1 * c1)
r1 = (b1 + sq1) / 2
a2 = 4
b2 = 2 * (height + width)
c2 = (1 - min_overlap) * width * height
sq2 = torch.sqrt(b2**2 - 4 * a2 * c2)
r2 = (b2 + sq2) / 2
a3 = 4 * min_overlap
b3 = -2 * min_overlap * (height + width)
c3 = (min_overlap - 1) * width * height
sq3 = torch.sqrt(b3**2 - 4 * a3 * c3)
r3 = (b3 + sq3) / 2
return min(r1, r2, r3)