650 lines
23 KiB
Python
650 lines
23 KiB
Python
import os
|
|
from collections import OrderedDict
|
|
from os import path as osp
|
|
from typing import List, Tuple, Union
|
|
|
|
import mmcv
|
|
import numpy as np
|
|
from nuscenes.nuscenes import NuScenes
|
|
from nuscenes.utils.geometry_utils import view_points
|
|
from pyquaternion import Quaternion
|
|
from shapely.geometry import MultiPoint, box
|
|
|
|
from mmdet3d.core.bbox.box_np_ops import points_cam2img
|
|
from mmdet3d.datasets import NuScenesDataset
|
|
|
|
nus_categories = (
|
|
"car",
|
|
"truck",
|
|
"trailer",
|
|
"bus",
|
|
"construction_vehicle",
|
|
"bicycle",
|
|
"motorcycle",
|
|
"pedestrian",
|
|
"traffic_cone",
|
|
"barrier",
|
|
)
|
|
|
|
nus_attributes = (
|
|
"cycle.with_rider",
|
|
"cycle.without_rider",
|
|
"pedestrian.moving",
|
|
"pedestrian.standing",
|
|
"pedestrian.sitting_lying_down",
|
|
"vehicle.moving",
|
|
"vehicle.parked",
|
|
"vehicle.stopped",
|
|
"None",
|
|
)
|
|
|
|
|
|
def create_nuscenes_infos(
|
|
root_path, info_prefix, version="v1.0-trainval", max_sweeps=10
|
|
):
|
|
"""Create info file of nuscene dataset.
|
|
|
|
Given the raw data, generate its related info file in pkl format.
|
|
|
|
Args:
|
|
root_path (str): Path of the data root.
|
|
info_prefix (str): Prefix of the info file to be generated.
|
|
version (str): Version of the data.
|
|
Default: 'v1.0-trainval'
|
|
max_sweeps (int): Max number of sweeps.
|
|
Default: 10
|
|
"""
|
|
from nuscenes.nuscenes import NuScenes
|
|
|
|
nusc = NuScenes(version=version, dataroot=root_path, verbose=True)
|
|
from nuscenes.utils import splits
|
|
|
|
available_vers = ["v1.0-trainval", "v1.0-test", "v1.0-mini"]
|
|
assert version in available_vers
|
|
if version == "v1.0-trainval":
|
|
train_scenes = splits.train
|
|
val_scenes = splits.val
|
|
elif version == "v1.0-test":
|
|
train_scenes = splits.test
|
|
val_scenes = []
|
|
elif version == "v1.0-mini":
|
|
train_scenes = splits.mini_train
|
|
val_scenes = splits.mini_val
|
|
else:
|
|
raise ValueError("unknown")
|
|
|
|
# filter existing scenes.
|
|
available_scenes = get_available_scenes(nusc)
|
|
available_scene_names = [s["name"] for s in available_scenes]
|
|
train_scenes = list(filter(lambda x: x in available_scene_names, train_scenes))
|
|
val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
|
|
train_scenes = set(
|
|
[
|
|
available_scenes[available_scene_names.index(s)]["token"]
|
|
for s in train_scenes
|
|
]
|
|
)
|
|
val_scenes = set(
|
|
[available_scenes[available_scene_names.index(s)]["token"] for s in val_scenes]
|
|
)
|
|
|
|
test = "test" in version
|
|
if test:
|
|
print("test scene: {}".format(len(train_scenes)))
|
|
else:
|
|
print(
|
|
"train scene: {}, val scene: {}".format(len(train_scenes), len(val_scenes))
|
|
)
|
|
train_nusc_infos, val_nusc_infos = _fill_trainval_infos(
|
|
nusc, train_scenes, val_scenes, test, max_sweeps=max_sweeps
|
|
)
|
|
|
|
metadata = dict(version=version)
|
|
if test:
|
|
print("test sample: {}".format(len(train_nusc_infos)))
|
|
data = dict(infos=train_nusc_infos, metadata=metadata)
|
|
info_path = osp.join(root_path, "{}_infos_test.pkl".format(info_prefix))
|
|
mmcv.dump(data, info_path)
|
|
else:
|
|
print(
|
|
"train sample: {}, val sample: {}".format(
|
|
len(train_nusc_infos), len(val_nusc_infos)
|
|
)
|
|
)
|
|
data = dict(infos=train_nusc_infos, metadata=metadata)
|
|
info_path = osp.join(root_path, "{}_infos_train.pkl".format(info_prefix))
|
|
mmcv.dump(data, info_path)
|
|
data["infos"] = val_nusc_infos
|
|
info_val_path = osp.join(root_path, "{}_infos_val.pkl".format(info_prefix))
|
|
mmcv.dump(data, info_val_path)
|
|
|
|
|
|
def get_available_scenes(nusc):
|
|
"""Get available scenes from the input nuscenes class.
|
|
|
|
Given the raw data, get the information of available scenes for
|
|
further info generation.
|
|
|
|
Args:
|
|
nusc (class): Dataset class in the nuScenes dataset.
|
|
|
|
Returns:
|
|
available_scenes (list[dict]): List of basic information for the
|
|
available scenes.
|
|
"""
|
|
available_scenes = []
|
|
print("total scene num: {}".format(len(nusc.scene)))
|
|
for scene in nusc.scene:
|
|
scene_token = scene["token"]
|
|
scene_rec = nusc.get("scene", scene_token)
|
|
sample_rec = nusc.get("sample", scene_rec["first_sample_token"])
|
|
sd_rec = nusc.get("sample_data", sample_rec["data"]["LIDAR_TOP"])
|
|
has_more_frames = True
|
|
scene_not_exist = False
|
|
while has_more_frames:
|
|
lidar_path, boxes, _ = nusc.get_sample_data(sd_rec["token"])
|
|
lidar_path = str(lidar_path)
|
|
if os.getcwd() in lidar_path:
|
|
# path from lyftdataset is absolute path
|
|
lidar_path = lidar_path.split(f"{os.getcwd()}/")[-1]
|
|
# relative path
|
|
if not mmcv.is_filepath(lidar_path):
|
|
scene_not_exist = True
|
|
break
|
|
else:
|
|
break
|
|
if scene_not_exist:
|
|
continue
|
|
available_scenes.append(scene)
|
|
print("exist scene num: {}".format(len(available_scenes)))
|
|
return available_scenes
|
|
|
|
|
|
def _fill_trainval_infos(nusc, train_scenes, val_scenes, test=False, max_sweeps=10):
|
|
"""Generate the train/val infos from the raw data.
|
|
|
|
Args:
|
|
nusc (:obj:`NuScenes`): Dataset class in the nuScenes dataset.
|
|
train_scenes (list[str]): Basic information of training scenes.
|
|
val_scenes (list[str]): Basic information of validation scenes.
|
|
test (bool): Whether use the test mode. In the test mode, no
|
|
annotations can be accessed. Default: False.
|
|
max_sweeps (int): Max number of sweeps. Default: 10.
|
|
|
|
Returns:
|
|
tuple[list[dict]]: Information of training set and validation set
|
|
that will be saved to the info file.
|
|
"""
|
|
train_nusc_infos = []
|
|
val_nusc_infos = []
|
|
|
|
for sample in mmcv.track_iter_progress(nusc.sample):
|
|
lidar_token = sample["data"]["LIDAR_TOP"]
|
|
sd_rec = nusc.get("sample_data", sample["data"]["LIDAR_TOP"])
|
|
cs_record = nusc.get("calibrated_sensor", sd_rec["calibrated_sensor_token"])
|
|
pose_record = nusc.get("ego_pose", sd_rec["ego_pose_token"])
|
|
location = nusc.get(
|
|
"log", nusc.get("scene", sample["scene_token"])["log_token"]
|
|
)["location"]
|
|
lidar_path, boxes, _ = nusc.get_sample_data(lidar_token)
|
|
|
|
mmcv.check_file_exist(lidar_path)
|
|
|
|
info = {
|
|
"lidar_path": lidar_path,
|
|
"token": sample["token"],
|
|
"sweeps": [],
|
|
"cams": dict(),
|
|
"lidar2ego_translation": cs_record["translation"],
|
|
"lidar2ego_rotation": cs_record["rotation"],
|
|
"ego2global_translation": pose_record["translation"],
|
|
"ego2global_rotation": pose_record["rotation"],
|
|
"timestamp": sample["timestamp"],
|
|
"location": location,
|
|
}
|
|
|
|
l2e_r = info["lidar2ego_rotation"]
|
|
l2e_t = info["lidar2ego_translation"]
|
|
e2g_r = info["ego2global_rotation"]
|
|
e2g_t = info["ego2global_translation"]
|
|
l2e_r_mat = Quaternion(l2e_r).rotation_matrix
|
|
e2g_r_mat = Quaternion(e2g_r).rotation_matrix
|
|
|
|
# obtain 6 image's information per frame
|
|
camera_types = [
|
|
"CAM_FRONT",
|
|
"CAM_FRONT_RIGHT",
|
|
"CAM_FRONT_LEFT",
|
|
"CAM_BACK",
|
|
"CAM_BACK_LEFT",
|
|
"CAM_BACK_RIGHT",
|
|
]
|
|
for cam in camera_types:
|
|
cam_token = sample["data"][cam]
|
|
cam_path, _, camera_intrinsics = nusc.get_sample_data(cam_token)
|
|
cam_info = obtain_sensor2top(
|
|
nusc, cam_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, cam
|
|
)
|
|
cam_info.update(camera_intrinsics=camera_intrinsics)
|
|
info["cams"].update({cam: cam_info})
|
|
|
|
# obtain sweeps for a single key-frame
|
|
sd_rec = nusc.get("sample_data", sample["data"]["LIDAR_TOP"])
|
|
sweeps = []
|
|
while len(sweeps) < max_sweeps:
|
|
if not sd_rec["prev"] == "":
|
|
sweep = obtain_sensor2top(
|
|
nusc, sd_rec["prev"], l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, "lidar"
|
|
)
|
|
sweeps.append(sweep)
|
|
sd_rec = nusc.get("sample_data", sd_rec["prev"])
|
|
else:
|
|
break
|
|
info["sweeps"] = sweeps
|
|
# obtain annotation
|
|
if not test:
|
|
annotations = [
|
|
nusc.get("sample_annotation", token) for token in sample["anns"]
|
|
]
|
|
locs = np.array([b.center for b in boxes]).reshape(-1, 3)
|
|
dims = np.array([b.wlh for b in boxes]).reshape(-1, 3)
|
|
rots = np.array([b.orientation.yaw_pitch_roll[0] for b in boxes]).reshape(
|
|
-1, 1
|
|
)
|
|
velocity = np.array(
|
|
[nusc.box_velocity(token)[:2] for token in sample["anns"]]
|
|
)
|
|
valid_flag = np.array(
|
|
[
|
|
(anno["num_lidar_pts"] + anno["num_radar_pts"]) > 0
|
|
for anno in annotations
|
|
],
|
|
dtype=bool,
|
|
).reshape(-1)
|
|
# convert velo from global to lidar
|
|
for i in range(len(boxes)):
|
|
velo = np.array([*velocity[i], 0.0])
|
|
velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
|
|
velocity[i] = velo[:2]
|
|
|
|
names = [b.name for b in boxes]
|
|
for i in range(len(names)):
|
|
if names[i] in NuScenesDataset.NameMapping:
|
|
names[i] = NuScenesDataset.NameMapping[names[i]]
|
|
names = np.array(names)
|
|
# we need to convert rot to SECOND format.
|
|
gt_boxes = np.concatenate([locs, dims, -rots - np.pi / 2], axis=1)
|
|
assert len(gt_boxes) == len(
|
|
annotations
|
|
), f"{len(gt_boxes)}, {len(annotations)}"
|
|
info["gt_boxes"] = gt_boxes
|
|
info["gt_names"] = names
|
|
info["gt_velocity"] = velocity.reshape(-1, 2)
|
|
info["num_lidar_pts"] = np.array([a["num_lidar_pts"] for a in annotations])
|
|
info["num_radar_pts"] = np.array([a["num_radar_pts"] for a in annotations])
|
|
info["valid_flag"] = valid_flag
|
|
|
|
if sample["scene_token"] in train_scenes:
|
|
train_nusc_infos.append(info)
|
|
else:
|
|
val_nusc_infos.append(info)
|
|
|
|
return train_nusc_infos, val_nusc_infos
|
|
|
|
|
|
def obtain_sensor2top(
|
|
nusc, sensor_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, sensor_type="lidar"
|
|
):
|
|
"""Obtain the info with RT matric from general sensor to Top LiDAR.
|
|
|
|
Args:
|
|
nusc (class): Dataset class in the nuScenes dataset.
|
|
sensor_token (str): Sample data token corresponding to the
|
|
specific sensor type.
|
|
l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3).
|
|
l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego
|
|
in shape (3, 3).
|
|
e2g_t (np.ndarray): Translation from ego to global in shape (1, 3).
|
|
e2g_r_mat (np.ndarray): Rotation matrix from ego to global
|
|
in shape (3, 3).
|
|
sensor_type (str): Sensor to calibrate. Default: 'lidar'.
|
|
|
|
Returns:
|
|
sweep (dict): Sweep information after transformation.
|
|
"""
|
|
sd_rec = nusc.get("sample_data", sensor_token)
|
|
cs_record = nusc.get("calibrated_sensor", sd_rec["calibrated_sensor_token"])
|
|
pose_record = nusc.get("ego_pose", sd_rec["ego_pose_token"])
|
|
data_path = str(nusc.get_sample_data_path(sd_rec["token"]))
|
|
if os.getcwd() in data_path: # path from lyftdataset is absolute path
|
|
data_path = data_path.split(f"{os.getcwd()}/")[-1] # relative path
|
|
sweep = {
|
|
"data_path": data_path,
|
|
"type": sensor_type,
|
|
"sample_data_token": sd_rec["token"],
|
|
"sensor2ego_translation": cs_record["translation"],
|
|
"sensor2ego_rotation": cs_record["rotation"],
|
|
"ego2global_translation": pose_record["translation"],
|
|
"ego2global_rotation": pose_record["rotation"],
|
|
"timestamp": sd_rec["timestamp"],
|
|
}
|
|
l2e_r_s = sweep["sensor2ego_rotation"]
|
|
l2e_t_s = sweep["sensor2ego_translation"]
|
|
e2g_r_s = sweep["ego2global_rotation"]
|
|
e2g_t_s = sweep["ego2global_translation"]
|
|
|
|
# obtain the RT from sensor to Top LiDAR
|
|
# sweep->ego->global->ego'->lidar
|
|
l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix
|
|
e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix
|
|
R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ (
|
|
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
|
|
)
|
|
T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ (
|
|
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
|
|
)
|
|
T -= (
|
|
e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
|
|
+ l2e_t @ np.linalg.inv(l2e_r_mat).T
|
|
)
|
|
sweep["sensor2lidar_rotation"] = R.T # points @ R.T + T
|
|
sweep["sensor2lidar_translation"] = T
|
|
return sweep
|
|
|
|
|
|
def export_2d_annotation(root_path, info_path, version, mono3d=True):
|
|
"""Export 2d annotation from the info file and raw data.
|
|
|
|
Args:
|
|
root_path (str): Root path of the raw data.
|
|
info_path (str): Path of the info file.
|
|
version (str): Dataset version.
|
|
mono3d (bool): Whether to export mono3d annotation. Default: True.
|
|
"""
|
|
# get bbox annotations for camera
|
|
camera_types = [
|
|
"CAM_FRONT",
|
|
"CAM_FRONT_RIGHT",
|
|
"CAM_FRONT_LEFT",
|
|
"CAM_BACK",
|
|
"CAM_BACK_LEFT",
|
|
"CAM_BACK_RIGHT",
|
|
]
|
|
nusc_infos = mmcv.load(info_path)["infos"]
|
|
nusc = NuScenes(version=version, dataroot=root_path, verbose=True)
|
|
# info_2d_list = []
|
|
cat2Ids = [
|
|
dict(id=nus_categories.index(cat_name), name=cat_name)
|
|
for cat_name in nus_categories
|
|
]
|
|
coco_ann_id = 0
|
|
coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids)
|
|
for info in mmcv.track_iter_progress(nusc_infos):
|
|
for cam in camera_types:
|
|
cam_info = info["cams"][cam]
|
|
coco_infos = get_2d_boxes(
|
|
nusc,
|
|
cam_info["sample_data_token"],
|
|
visibilities=["", "1", "2", "3", "4"],
|
|
mono3d=mono3d,
|
|
)
|
|
(height, width, _) = mmcv.imread(cam_info["data_path"]).shape
|
|
coco_2d_dict["images"].append(
|
|
dict(
|
|
file_name=cam_info["data_path"].split("data/nuscenes/")[-1],
|
|
id=cam_info["sample_data_token"],
|
|
token=info["token"],
|
|
cam2ego_rotation=cam_info["sensor2ego_rotation"],
|
|
cam2ego_translation=cam_info["sensor2ego_translation"],
|
|
ego2global_rotation=info["ego2global_rotation"],
|
|
ego2global_translation=info["ego2global_translation"],
|
|
camera_intrinsics=cam_info["camera_intrinsics"],
|
|
width=width,
|
|
height=height,
|
|
)
|
|
)
|
|
for coco_info in coco_infos:
|
|
if coco_info is None:
|
|
continue
|
|
# add an empty key for coco format
|
|
coco_info["segmentation"] = []
|
|
coco_info["id"] = coco_ann_id
|
|
coco_2d_dict["annotations"].append(coco_info)
|
|
coco_ann_id += 1
|
|
if mono3d:
|
|
json_prefix = f"{info_path[:-4]}_mono3d"
|
|
else:
|
|
json_prefix = f"{info_path[:-4]}"
|
|
mmcv.dump(coco_2d_dict, f"{json_prefix}.coco.json")
|
|
|
|
|
|
def get_2d_boxes(nusc, sample_data_token: str, visibilities: List[str], mono3d=True):
|
|
"""Get the 2D annotation records for a given `sample_data_token`.
|
|
|
|
Args:
|
|
sample_data_token (str): Sample data token belonging to a camera \
|
|
keyframe.
|
|
visibilities (list[str]): Visibility filter.
|
|
mono3d (bool): Whether to get boxes with mono3d annotation.
|
|
|
|
Return:
|
|
list[dict]: List of 2D annotation record that belongs to the input
|
|
`sample_data_token`.
|
|
"""
|
|
|
|
# Get the sample data and the sample corresponding to that sample data.
|
|
sd_rec = nusc.get("sample_data", sample_data_token)
|
|
|
|
assert sd_rec["sensor_modality"] == "camera", (
|
|
"Error: get_2d_boxes only works" " for camera sample_data!"
|
|
)
|
|
if not sd_rec["is_key_frame"]:
|
|
raise ValueError("The 2D re-projections are available only for keyframes.")
|
|
|
|
s_rec = nusc.get("sample", sd_rec["sample_token"])
|
|
|
|
# Get the calibrated sensor and ego pose
|
|
# record to get the transformation matrices.
|
|
cs_rec = nusc.get("calibrated_sensor", sd_rec["calibrated_sensor_token"])
|
|
pose_rec = nusc.get("ego_pose", sd_rec["ego_pose_token"])
|
|
camera_intrinsic = np.array(cs_rec["camera_intrinsic"])
|
|
|
|
# Get all the annotation with the specified visibilties.
|
|
ann_recs = [nusc.get("sample_annotation", token) for token in s_rec["anns"]]
|
|
ann_recs = [
|
|
ann_rec for ann_rec in ann_recs if (ann_rec["visibility_token"] in visibilities)
|
|
]
|
|
|
|
repro_recs = []
|
|
|
|
for ann_rec in ann_recs:
|
|
# Augment sample_annotation with token information.
|
|
ann_rec["sample_annotation_token"] = ann_rec["token"]
|
|
ann_rec["sample_data_token"] = sample_data_token
|
|
|
|
# Get the box in global coordinates.
|
|
box = nusc.get_box(ann_rec["token"])
|
|
|
|
# Move them to the ego-pose frame.
|
|
box.translate(-np.array(pose_rec["translation"]))
|
|
box.rotate(Quaternion(pose_rec["rotation"]).inverse)
|
|
|
|
# Move them to the calibrated sensor frame.
|
|
box.translate(-np.array(cs_rec["translation"]))
|
|
box.rotate(Quaternion(cs_rec["rotation"]).inverse)
|
|
|
|
# Filter out the corners that are not in front of the calibrated
|
|
# sensor.
|
|
corners_3d = box.corners()
|
|
in_front = np.argwhere(corners_3d[2, :] > 0).flatten()
|
|
corners_3d = corners_3d[:, in_front]
|
|
|
|
# Project 3d box to 2d.
|
|
corner_coords = (
|
|
view_points(corners_3d, camera_intrinsic, True).T[:, :2].tolist()
|
|
)
|
|
|
|
# Keep only corners that fall within the image.
|
|
final_coords = post_process_coords(corner_coords)
|
|
|
|
# Skip if the convex hull of the re-projected corners
|
|
# does not intersect the image canvas.
|
|
if final_coords is None:
|
|
continue
|
|
else:
|
|
min_x, min_y, max_x, max_y = final_coords
|
|
|
|
# Generate dictionary record to be included in the .json file.
|
|
repro_rec = generate_record(
|
|
ann_rec, min_x, min_y, max_x, max_y, sample_data_token, sd_rec["filename"]
|
|
)
|
|
|
|
# If mono3d=True, add 3D annotations in camera coordinates
|
|
if mono3d and (repro_rec is not None):
|
|
loc = box.center.tolist()
|
|
|
|
dim = box.wlh
|
|
dim[[0, 1, 2]] = dim[[1, 2, 0]] # convert wlh to our lhw
|
|
dim = dim.tolist()
|
|
|
|
rot = box.orientation.yaw_pitch_roll[0]
|
|
rot = [-rot] # convert the rot to our cam coordinate
|
|
|
|
global_velo2d = nusc.box_velocity(box.token)[:2]
|
|
global_velo3d = np.array([*global_velo2d, 0.0])
|
|
e2g_r_mat = Quaternion(pose_rec["rotation"]).rotation_matrix
|
|
c2e_r_mat = Quaternion(cs_rec["rotation"]).rotation_matrix
|
|
cam_velo3d = (
|
|
global_velo3d @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(c2e_r_mat).T
|
|
)
|
|
velo = cam_velo3d[0::2].tolist()
|
|
|
|
repro_rec["bbox_cam3d"] = loc + dim + rot
|
|
repro_rec["velo_cam3d"] = velo
|
|
|
|
center3d = np.array(loc).reshape([1, 3])
|
|
center2d = points_cam2img(center3d, camera_intrinsic, with_depth=True)
|
|
repro_rec["center2d"] = center2d.squeeze().tolist()
|
|
# normalized center2D + depth
|
|
# if samples with depth < 0 will be removed
|
|
if repro_rec["center2d"][2] <= 0:
|
|
continue
|
|
|
|
ann_token = nusc.get("sample_annotation", box.token)["attribute_tokens"]
|
|
if len(ann_token) == 0:
|
|
attr_name = "None"
|
|
else:
|
|
attr_name = nusc.get("attribute", ann_token[0])["name"]
|
|
attr_id = nus_attributes.index(attr_name)
|
|
repro_rec["attribute_name"] = attr_name
|
|
repro_rec["attribute_id"] = attr_id
|
|
|
|
repro_recs.append(repro_rec)
|
|
|
|
return repro_recs
|
|
|
|
|
|
def post_process_coords(
|
|
corner_coords: List, imsize: Tuple[int, int] = (1600, 900)
|
|
) -> Union[Tuple[float, float, float, float], None]:
|
|
"""Get the intersection of the convex hull of the reprojected bbox corners
|
|
and the image canvas, return None if no intersection.
|
|
|
|
Args:
|
|
corner_coords (list[int]): Corner coordinates of reprojected
|
|
bounding box.
|
|
imsize (tuple[int]): Size of the image canvas.
|
|
|
|
Return:
|
|
tuple [float]: Intersection of the convex hull of the 2D box
|
|
corners and the image canvas.
|
|
"""
|
|
polygon_from_2d_box = MultiPoint(corner_coords).convex_hull
|
|
img_canvas = box(0, 0, imsize[0], imsize[1])
|
|
|
|
if polygon_from_2d_box.intersects(img_canvas):
|
|
img_intersection = polygon_from_2d_box.intersection(img_canvas)
|
|
intersection_coords = np.array(
|
|
[coord for coord in img_intersection.exterior.coords]
|
|
)
|
|
|
|
min_x = min(intersection_coords[:, 0])
|
|
min_y = min(intersection_coords[:, 1])
|
|
max_x = max(intersection_coords[:, 0])
|
|
max_y = max(intersection_coords[:, 1])
|
|
|
|
return min_x, min_y, max_x, max_y
|
|
else:
|
|
return None
|
|
|
|
|
|
def generate_record(
|
|
ann_rec: dict,
|
|
x1: float,
|
|
y1: float,
|
|
x2: float,
|
|
y2: float,
|
|
sample_data_token: str,
|
|
filename: str,
|
|
) -> OrderedDict:
|
|
"""Generate one 2D annotation record given various informations on top of
|
|
the 2D bounding box coordinates.
|
|
|
|
Args:
|
|
ann_rec (dict): Original 3d annotation record.
|
|
x1 (float): Minimum value of the x coordinate.
|
|
y1 (float): Minimum value of the y coordinate.
|
|
x2 (float): Maximum value of the x coordinate.
|
|
y2 (float): Maximum value of the y coordinate.
|
|
sample_data_token (str): Sample data token.
|
|
filename (str):The corresponding image file where the annotation
|
|
is present.
|
|
|
|
Returns:
|
|
dict: A sample 2D annotation record.
|
|
- file_name (str): flie name
|
|
- image_id (str): sample data token
|
|
- area (float): 2d box area
|
|
- category_name (str): category name
|
|
- category_id (int): category id
|
|
- bbox (list[float]): left x, top y, dx, dy of 2d box
|
|
- iscrowd (int): whether the area is crowd
|
|
"""
|
|
repro_rec = OrderedDict()
|
|
repro_rec["sample_data_token"] = sample_data_token
|
|
coco_rec = dict()
|
|
|
|
relevant_keys = [
|
|
"attribute_tokens",
|
|
"category_name",
|
|
"instance_token",
|
|
"next",
|
|
"num_lidar_pts",
|
|
"num_radar_pts",
|
|
"prev",
|
|
"sample_annotation_token",
|
|
"sample_data_token",
|
|
"visibility_token",
|
|
]
|
|
|
|
for key, value in ann_rec.items():
|
|
if key in relevant_keys:
|
|
repro_rec[key] = value
|
|
|
|
repro_rec["bbox_corners"] = [x1, y1, x2, y2]
|
|
repro_rec["filename"] = filename
|
|
|
|
coco_rec["file_name"] = filename
|
|
coco_rec["image_id"] = sample_data_token
|
|
coco_rec["area"] = (y2 - y1) * (x2 - x1)
|
|
|
|
if repro_rec["category_name"] not in NuScenesDataset.NameMapping:
|
|
return None
|
|
cat_name = NuScenesDataset.NameMapping[repro_rec["category_name"]]
|
|
coco_rec["category_name"] = cat_name
|
|
coco_rec["category_id"] = nus_categories.index(cat_name)
|
|
coco_rec["bbox"] = [x1, y1, x2 - x1, y2 - y1]
|
|
coco_rec["iscrowd"] = 0
|
|
|
|
return coco_rec
|