bev-project/tools/test.py

235 lines
8.3 KiB
Python

import argparse
import copy
import os
import sys
import warnings
# Add the root directory to Python path to ensure we use the local mmdet3d
sys.path.insert(0, '/workspace/bevfusion')
import mmcv
import torch
from torchpack.utils.config import configs
from torchpack import distributed as dist
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint, wrap_fp16_model
from mmdet3d.apis import single_gpu_test
from mmdet3d.datasets import build_dataloader, build_dataset
from mmdet3d.models import build_model
from mmdet.apis import multi_gpu_test, set_random_seed
from mmdet.datasets import replace_ImageToTensor
from mmdet3d.utils import recursive_eval
def parse_args():
parser = argparse.ArgumentParser(description="MMDet test (and eval) a model")
parser.add_argument("config", help="test config file path")
parser.add_argument("checkpoint", help="checkpoint file")
parser.add_argument("--out", help="output result file in pickle format")
parser.add_argument(
"--fuse-conv-bn",
action="store_true",
help="Whether to fuse conv and bn, this will slightly increase"
"the inference speed",
)
parser.add_argument(
"--format-only",
action="store_true",
help="Format the output results without perform evaluation. It is"
"useful when you want to format the result to a specific format and "
"submit it to the test server",
)
parser.add_argument(
"--eval",
type=str,
nargs="+",
help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC',
)
parser.add_argument("--show", action="store_true", help="show results")
parser.add_argument("--show-dir", help="directory where results will be saved")
parser.add_argument(
"--gpu-collect",
action="store_true",
help="whether to use gpu to collect results.",
)
parser.add_argument(
"--tmpdir",
help="tmp directory used for collecting results from multiple "
"workers, available when gpu-collect is not specified",
)
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument(
"--deterministic",
action="store_true",
help="whether to set deterministic options for CUDNN backend.",
)
parser.add_argument(
"--cfg-options",
nargs="+",
action=DictAction,
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file. If the value to "
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
"Note that the quotation marks are necessary and that no white space "
"is allowed.",
)
parser.add_argument(
"--options",
nargs="+",
action=DictAction,
help="custom options for evaluation, the key-value pair in xxx=yyy "
"format will be kwargs for dataset.evaluate() function (deprecate), "
"change to --eval-options instead.",
)
parser.add_argument(
"--eval-options",
nargs="+",
action=DictAction,
help="custom options for evaluation, the key-value pair in xxx=yyy "
"format will be kwargs for dataset.evaluate() function",
)
parser.add_argument(
"--launcher",
choices=["none", "pytorch", "slurm", "mpi"],
default="none",
help="job launcher",
)
parser.add_argument("--local_rank", type=int, default=0)
args = parser.parse_args()
if "LOCAL_RANK" not in os.environ:
os.environ["LOCAL_RANK"] = str(args.local_rank)
if args.options and args.eval_options:
raise ValueError(
"--options and --eval-options cannot be both specified, "
"--options is deprecated in favor of --eval-options"
)
if args.options:
warnings.warn("--options is deprecated in favor of --eval-options")
args.eval_options = args.options
return args
def main():
args = parse_args()
dist.init()
torch.backends.cudnn.benchmark = True
torch.cuda.set_device(dist.local_rank())
assert args.out or args.eval or args.format_only or args.show or args.show_dir, (
"Please specify at least one operation (save/eval/format/show the "
'results / save the results) with the argument "--out", "--eval"'
', "--format-only", "--show" or "--show-dir"'
)
if args.eval and args.format_only:
raise ValueError("--eval and --format_only cannot be both specified")
if args.out is not None and not args.out.endswith((".pkl", ".pickle")):
raise ValueError("The output file must be a pkl file.")
configs.load(args.config, recursive=True)
cfg = Config(recursive_eval(configs), filename=args.config)
print(cfg)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get("cudnn_benchmark", False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
# in case the test dataset is concatenated
samples_per_gpu = 1
if isinstance(cfg.data.test, dict):
cfg.data.test.test_mode = True
samples_per_gpu = cfg.data.test.pop("samples_per_gpu", 1)
if samples_per_gpu > 1:
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
elif isinstance(cfg.data.test, list):
for ds_cfg in cfg.data.test:
ds_cfg.test_mode = True
samples_per_gpu = max(
[ds_cfg.pop("samples_per_gpu", 1) for ds_cfg in cfg.data.test]
)
if samples_per_gpu > 1:
for ds_cfg in cfg.data.test:
ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)
# init distributed env first, since logger depends on the dist info.
distributed = True
# set random seeds
if args.seed is not None:
set_random_seed(args.seed, deterministic=args.deterministic)
# build the dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False,
)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_model(cfg.model, test_cfg=cfg.get("test_cfg"))
fp16_cfg = cfg.get("fp16", None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location="cpu")
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if "CLASSES" in checkpoint.get("meta", {}):
model.CLASSES = checkpoint["meta"]["CLASSES"]
else:
model.CLASSES = dataset.CLASSES
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False,
)
outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect)
rank, _ = get_dist_info()
if rank == 0:
if args.out:
print(f"\nwriting results to {args.out}")
mmcv.dump(outputs, args.out)
kwargs = {} if args.eval_options is None else args.eval_options
if args.format_only:
dataset.format_results(outputs, **kwargs)
if args.eval:
eval_kwargs = cfg.get("evaluation", {}).copy()
# hard-code way to remove EvalHook args
for key in [
"interval",
"tmpdir",
"start",
"gpu_collect",
"save_best",
"rule",
]:
eval_kwargs.pop(key, None)
eval_kwargs.update(dict(metric=args.eval, **kwargs))
print(dataset.evaluate(outputs, **eval_kwargs))
if __name__ == "__main__":
main()