235 lines
8.3 KiB
Python
235 lines
8.3 KiB
Python
import argparse
|
|
import copy
|
|
import os
|
|
import sys
|
|
import warnings
|
|
|
|
# Add the root directory to Python path to ensure we use the local mmdet3d
|
|
sys.path.insert(0, '/workspace/bevfusion')
|
|
|
|
import mmcv
|
|
import torch
|
|
from torchpack.utils.config import configs
|
|
from torchpack import distributed as dist
|
|
from mmcv import Config, DictAction
|
|
from mmcv.cnn import fuse_conv_bn
|
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
|
from mmcv.runner import get_dist_info, init_dist, load_checkpoint, wrap_fp16_model
|
|
from mmdet3d.apis import single_gpu_test
|
|
from mmdet3d.datasets import build_dataloader, build_dataset
|
|
from mmdet3d.models import build_model
|
|
from mmdet.apis import multi_gpu_test, set_random_seed
|
|
from mmdet.datasets import replace_ImageToTensor
|
|
from mmdet3d.utils import recursive_eval
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="MMDet test (and eval) a model")
|
|
parser.add_argument("config", help="test config file path")
|
|
parser.add_argument("checkpoint", help="checkpoint file")
|
|
parser.add_argument("--out", help="output result file in pickle format")
|
|
parser.add_argument(
|
|
"--fuse-conv-bn",
|
|
action="store_true",
|
|
help="Whether to fuse conv and bn, this will slightly increase"
|
|
"the inference speed",
|
|
)
|
|
parser.add_argument(
|
|
"--format-only",
|
|
action="store_true",
|
|
help="Format the output results without perform evaluation. It is"
|
|
"useful when you want to format the result to a specific format and "
|
|
"submit it to the test server",
|
|
)
|
|
parser.add_argument(
|
|
"--eval",
|
|
type=str,
|
|
nargs="+",
|
|
help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
|
|
' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC',
|
|
)
|
|
parser.add_argument("--show", action="store_true", help="show results")
|
|
parser.add_argument("--show-dir", help="directory where results will be saved")
|
|
parser.add_argument(
|
|
"--gpu-collect",
|
|
action="store_true",
|
|
help="whether to use gpu to collect results.",
|
|
)
|
|
parser.add_argument(
|
|
"--tmpdir",
|
|
help="tmp directory used for collecting results from multiple "
|
|
"workers, available when gpu-collect is not specified",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="random seed")
|
|
parser.add_argument(
|
|
"--deterministic",
|
|
action="store_true",
|
|
help="whether to set deterministic options for CUDNN backend.",
|
|
)
|
|
parser.add_argument(
|
|
"--cfg-options",
|
|
nargs="+",
|
|
action=DictAction,
|
|
help="override some settings in the used config, the key-value pair "
|
|
"in xxx=yyy format will be merged into config file. If the value to "
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
"Note that the quotation marks are necessary and that no white space "
|
|
"is allowed.",
|
|
)
|
|
parser.add_argument(
|
|
"--options",
|
|
nargs="+",
|
|
action=DictAction,
|
|
help="custom options for evaluation, the key-value pair in xxx=yyy "
|
|
"format will be kwargs for dataset.evaluate() function (deprecate), "
|
|
"change to --eval-options instead.",
|
|
)
|
|
parser.add_argument(
|
|
"--eval-options",
|
|
nargs="+",
|
|
action=DictAction,
|
|
help="custom options for evaluation, the key-value pair in xxx=yyy "
|
|
"format will be kwargs for dataset.evaluate() function",
|
|
)
|
|
parser.add_argument(
|
|
"--launcher",
|
|
choices=["none", "pytorch", "slurm", "mpi"],
|
|
default="none",
|
|
help="job launcher",
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=0)
|
|
args = parser.parse_args()
|
|
if "LOCAL_RANK" not in os.environ:
|
|
os.environ["LOCAL_RANK"] = str(args.local_rank)
|
|
|
|
if args.options and args.eval_options:
|
|
raise ValueError(
|
|
"--options and --eval-options cannot be both specified, "
|
|
"--options is deprecated in favor of --eval-options"
|
|
)
|
|
if args.options:
|
|
warnings.warn("--options is deprecated in favor of --eval-options")
|
|
args.eval_options = args.options
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
dist.init()
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.cuda.set_device(dist.local_rank())
|
|
|
|
assert args.out or args.eval or args.format_only or args.show or args.show_dir, (
|
|
"Please specify at least one operation (save/eval/format/show the "
|
|
'results / save the results) with the argument "--out", "--eval"'
|
|
', "--format-only", "--show" or "--show-dir"'
|
|
)
|
|
|
|
if args.eval and args.format_only:
|
|
raise ValueError("--eval and --format_only cannot be both specified")
|
|
|
|
if args.out is not None and not args.out.endswith((".pkl", ".pickle")):
|
|
raise ValueError("The output file must be a pkl file.")
|
|
|
|
configs.load(args.config, recursive=True)
|
|
cfg = Config(recursive_eval(configs), filename=args.config)
|
|
print(cfg)
|
|
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
# set cudnn_benchmark
|
|
if cfg.get("cudnn_benchmark", False):
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
cfg.model.pretrained = None
|
|
# in case the test dataset is concatenated
|
|
samples_per_gpu = 1
|
|
if isinstance(cfg.data.test, dict):
|
|
cfg.data.test.test_mode = True
|
|
samples_per_gpu = cfg.data.test.pop("samples_per_gpu", 1)
|
|
if samples_per_gpu > 1:
|
|
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
|
|
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
|
|
elif isinstance(cfg.data.test, list):
|
|
for ds_cfg in cfg.data.test:
|
|
ds_cfg.test_mode = True
|
|
samples_per_gpu = max(
|
|
[ds_cfg.pop("samples_per_gpu", 1) for ds_cfg in cfg.data.test]
|
|
)
|
|
if samples_per_gpu > 1:
|
|
for ds_cfg in cfg.data.test:
|
|
ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
distributed = True
|
|
|
|
# set random seeds
|
|
if args.seed is not None:
|
|
set_random_seed(args.seed, deterministic=args.deterministic)
|
|
|
|
# build the dataloader
|
|
dataset = build_dataset(cfg.data.test)
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=samples_per_gpu,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
dist=distributed,
|
|
shuffle=False,
|
|
)
|
|
|
|
# build the model and load checkpoint
|
|
cfg.model.train_cfg = None
|
|
model = build_model(cfg.model, test_cfg=cfg.get("test_cfg"))
|
|
fp16_cfg = cfg.get("fp16", None)
|
|
if fp16_cfg is not None:
|
|
wrap_fp16_model(model)
|
|
checkpoint = load_checkpoint(model, args.checkpoint, map_location="cpu")
|
|
if args.fuse_conv_bn:
|
|
model = fuse_conv_bn(model)
|
|
# old versions did not save class info in checkpoints, this walkaround is
|
|
# for backward compatibility
|
|
if "CLASSES" in checkpoint.get("meta", {}):
|
|
model.CLASSES = checkpoint["meta"]["CLASSES"]
|
|
else:
|
|
model.CLASSES = dataset.CLASSES
|
|
|
|
if not distributed:
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
outputs = single_gpu_test(model, data_loader)
|
|
else:
|
|
model = MMDistributedDataParallel(
|
|
model.cuda(),
|
|
device_ids=[torch.cuda.current_device()],
|
|
broadcast_buffers=False,
|
|
)
|
|
outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect)
|
|
|
|
rank, _ = get_dist_info()
|
|
if rank == 0:
|
|
if args.out:
|
|
print(f"\nwriting results to {args.out}")
|
|
mmcv.dump(outputs, args.out)
|
|
kwargs = {} if args.eval_options is None else args.eval_options
|
|
if args.format_only:
|
|
dataset.format_results(outputs, **kwargs)
|
|
if args.eval:
|
|
eval_kwargs = cfg.get("evaluation", {}).copy()
|
|
# hard-code way to remove EvalHook args
|
|
for key in [
|
|
"interval",
|
|
"tmpdir",
|
|
"start",
|
|
"gpu_collect",
|
|
"save_best",
|
|
"rule",
|
|
]:
|
|
eval_kwargs.pop(key, None)
|
|
eval_kwargs.update(dict(metric=args.eval, **kwargs))
|
|
print(dataset.evaluate(outputs, **eval_kwargs))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|