bev-project/tools/benchmark.py

90 lines
2.8 KiB
Python

import argparse
import time
import torch
from mmcv import Config
from mmcv.parallel import MMDataParallel
from mmcv.runner import load_checkpoint, wrap_fp16_model
from mmdet3d.datasets import build_dataloader, build_dataset
from mmdet3d.models import build_fusion_model
from torchpack.utils.config import configs
from mmdet3d.utils import recursive_eval
def parse_args():
parser = argparse.ArgumentParser(description="MMDet benchmark a model")
parser.add_argument("config", help="test config file path")
parser.add_argument("checkpoint", help="checkpoint file")
parser.add_argument("--samples", default=2000, help="samples to benchmark")
parser.add_argument("--log-interval", default=50, help="interval of logging")
parser.add_argument("--fp16", action="store_true")
args = parser.parse_args()
return args
def main():
args = parse_args()
configs.load(args.config, recursive=True)
cfg = Config(recursive_eval(configs), filename=args.config)
# set cudnn_benchmark
if cfg.get("cudnn_benchmark", False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=False,
shuffle=False,
)
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_fusion_model(cfg.model, test_cfg=cfg.get("test_cfg"))
if args.fp16:
wrap_fp16_model(model)
load_checkpoint(model, args.checkpoint, map_location="cpu")
model = MMDataParallel(model, device_ids=[0])
model.eval()
# the first several iterations may be very slow so skip them
num_warmup = 5
pure_inf_time = 0
# benchmark with several samples and take the average
for i, data in enumerate(data_loader):
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
model(return_loss=False, rescale=True, **data)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % args.log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print(
f"Done image [{i + 1:<3}/ {args.samples}], "
f"fps: {fps:.1f} img / s"
)
if (i + 1) == args.samples:
pure_inf_time += elapsed
fps = (i + 1 - num_warmup) / pure_inf_time
print(f"Overall fps: {fps:.1f} img / s")
break
if __name__ == "__main__":
main()