bev-project/mmdet3d/models/necks/lss.py

66 lines
1.8 KiB
Python

from typing import List, Tuple
import torch
from torch import nn
from torch.nn import functional as F
from mmdet.models import NECKS
__all__ = ["LSSFPN"]
@NECKS.register_module()
class LSSFPN(nn.Module):
def __init__(
self,
in_indices: Tuple[int, int],
in_channels: Tuple[int, int],
out_channels: int,
scale_factor: int = 1,
) -> None:
super().__init__()
self.in_indices = in_indices
self.in_channels = in_channels
self.out_channels = out_channels
self.scale_factor = scale_factor
self.fuse = nn.Sequential(
nn.Conv2d(in_channels[0] + in_channels[1], out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(True),
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(True),
)
if scale_factor > 1:
self.upsample = nn.Sequential(
nn.Upsample(
scale_factor=scale_factor,
mode="bilinear",
align_corners=True,
),
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(True),
)
def forward(self, x: List[torch.Tensor]) -> torch.Tensor:
x1 = x[self.in_indices[0]]
assert x1.shape[1] == self.in_channels[0]
x2 = x[self.in_indices[1]]
assert x2.shape[1] == self.in_channels[1]
x1 = F.interpolate(
x1,
size=x2.shape[-2:],
mode="bilinear",
align_corners=True,
)
x = torch.cat([x1, x2], dim=1)
x = self.fuse(x)
if self.scale_factor > 1:
x = self.upsample(x)
return x