🎯 Training Status: - Current Epoch: 2/10 (13.3% complete) - Segmentation Dice: 0.9594 - Detection IoU: 0.5742 - Training stable with 8 GPUs 🔧 Technical Achievements: - ✅ RMT-PPAD Transformer segmentation decoder integrated - ✅ Task-specific GCA architecture optimized - ✅ Multi-scale feature fusion (180×180, 360×360, 600×600) - ✅ Adaptive scale weight learning implemented - ✅ BEVFusion multi-task framework enhanced 📊 Performance Highlights: - Divider segmentation: 0.9793 Dice (excellent) - Pedestrian crossing: 0.9812 Dice (excellent) - Stop line: 0.9812 Dice (excellent) - Carpark area: 0.9802 Dice (excellent) - Walkway: 0.9401 Dice (good) - Drivable area: 0.8959 Dice (good) 🛠️ Code Changes Included: - Enhanced BEVFusion model (bevfusion.py) - RMT-PPAD integration modules (rmtppad_integration.py) - Transformer segmentation head (enhanced_transformer.py) - GCA module optimizations (gca.py) - Configuration updates (Phase 4B configs) - Training scripts and automation tools - Comprehensive documentation and analysis reports 📅 Snapshot Date: Fri Nov 14 09:06:09 UTC 2025 📍 Environment: Docker container 🎯 Phase: RMT-PPAD Integration Complete |
||
|---|---|---|
| .. | ||
| Dockerfile | ||
| Dockerfile.ssh | ||
| build_with_registry.sh | ||
| run-ssh-container.sh | ||
| start-ssh.sh | ||