44 lines
1.3 KiB
Bash
Executable File
44 lines
1.3 KiB
Bash
Executable File
#!/bin/bash
|
||
# 多任务训练最终版本
|
||
|
||
set -e
|
||
|
||
export PATH=/opt/conda/bin:$PATH
|
||
cd /workspace/bevfusion
|
||
|
||
echo "=========================================="
|
||
echo "BEVFusion 多任务训练"
|
||
echo "任务: 3D检测 + BEV分割(同时训练)"
|
||
echo "=========================================="
|
||
echo ""
|
||
echo "配置信息:"
|
||
echo " 配置: multitask.yaml (检测+分割)"
|
||
echo " GPU: 8x Tesla V100S (32GB)"
|
||
echo " Epochs: 20"
|
||
echo " 优化: workers_per_gpu=0"
|
||
echo ""
|
||
echo "预计训练时间: 28-32小时"
|
||
echo "预期性能:"
|
||
echo " - 检测: mAP ~67-69%"
|
||
echo " - 分割: mIoU ~61-62%"
|
||
echo ""
|
||
echo "模型特点:"
|
||
echo " - 一个模型同时输出检测和分割"
|
||
echo " - 共享特征提取(encoder/fuser/decoder)"
|
||
echo " - 两个独立的任务头(object + map)"
|
||
echo " - 两个任务的梯度同时更新模型"
|
||
echo ""
|
||
echo "=========================================="
|
||
echo ""
|
||
|
||
torchpack dist-run -np 8 python tools/train.py \
|
||
configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask.yaml \
|
||
--model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \
|
||
--load_from pretrained/lidar-only-det.pth \
|
||
--data.workers_per_gpu 0
|
||
|
||
echo ""
|
||
echo "=========================================="
|
||
echo "多任务训练完成!"
|
||
echo "=========================================="
|