bev-project/RMT-PPAD-main/ultralytics/models/mtdetr/train.py

139 lines
5.0 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
from copy import copy
import torch
from ultralytics.models.yolo.detect import DetectionTrainer
from ultralytics.nn.tasks import MTDETRModel
from ultralytics.utils import RANK, colorstr
from .val import MTDETRDataset, MTDETRValidator
class MTDETRTrainer(DetectionTrainer):
"""
Trainer class for the RT-DETR model developed by Baidu for real-time object detection. Extends the DetectionTrainer
class for YOLO to adapt to the specific features and architecture of RT-DETR. This model leverages Vision
Transformers and has capabilities like IoU-aware query selection and adaptable inference speed.
Notes:
- F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
- AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.
Example:
```python
from ultralytics.models.rtdetr.train import RTDETRTrainer
args = dict(model="rtdetr-l.yaml", data="coco8.yaml", imgsz=640, epochs=3)
trainer = RTDETRTrainer(overrides=args)
trainer.train()
```
"""
def get_model(self, cfg=None, weights=None, verbose=True):
"""
Initialize and return an RT-DETR model for object detection tasks.
Args:
cfg (dict, optional): Model configuration. Defaults to None.
weights (str, optional): Path to pre-trained model weights. Defaults to None.
verbose (bool): Verbose logging if True. Defaults to True.
Returns:
(RTDETRDetectionModel): Initialized model.
"""
model = MTDETRModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
if weights:
model.load(weights)
return model
def build_dataset(self, img_path, mode="val", batch=None):
"""
Build and return an RT-DETR dataset for training or validation.
Args:
img_path (str): Path to the folder containing images.
mode (str): Dataset mode, either 'train' or 'val'.
batch (int, optional): Batch size for rectangle training. Defaults to None.
Returns:
(RTDETRDataset): Dataset object for the specific mode.
"""
return MTDETRDataset(
img_path=img_path,
imgsz=self.args.imgsz,
batch_size=batch,
augment=mode == "train",
hyp=self.args,
rect=False,
cache=self.args.cache or None,
prefix=colorstr(f"{mode}: "),
data=self.data,
)
def get_validator(self):
"""
Returns a DetectionValidator suitable for RT-DETR model validation.
Returns:
(RTDETRValidator): Validator object for model validation.
"""
self.loss_names_det = "giou_loss", "cls_loss", "l1_loss" ### JW TBD, require to add the segmentation loss
self.loss_names_seg = "TBD", "TBD"
self.loss_names = "Detection", "da_Seg", "ll_seg"
self.loss_diy = "Det_gate", "Seg_gate"
### JW collect the number of each task.
number_task = {key: len(value) for key, value in self.data['type_task'].items()}
return MTDETRValidator(self.test_loader, number_task, save_dir=self.save_dir, args=copy(self.args))
def label_loss_items(self, loss_items=None, prefix="train", task=None):
"""
Returns a loss dict with labelled training loss items tensor.
Not needed for classification but necessary for segmentation & detection
"""
if task is 'detection':
keys = [f"{prefix}/{x}" for x in self.loss_names_det]
else:
keys = [f"{prefix}/{x}" for x in self.loss_names_seg]
if loss_items is not None:
loss_items = [round(float(x), 5) for x in loss_items] # convert tensors to 5 decimal place floats
return dict(zip(keys, loss_items))
else:
return keys
def preprocess_batch(self, batch):
"""
Preprocess a batch of images. Scales and converts the images to float format.
Args:
batch (dict): Dictionary containing a batch of images, bboxes, and labels.
Returns:
(dict): Preprocessed batch.
"""
batch = super().preprocess_batch(batch)
bs = len(batch["img"])
batch_idx = batch["batch_idx"]
gt_bbox, gt_class, gt_mask = [], [], []
for i in range(bs):
gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
# gt_mask.append(batch["masks"][batch_idx == i].to(batch_idx.device)) ### JW add ground truth for mask to batch
return batch
def progress_string(self):
return ("\n" + "%11s" * (6 + len(self.loss_names) +len(self.loss_diy))) % (
"Epoch",
"GPU_mem",
*self.loss_names,
"lr",
"grad_norm",
*self.loss_diy,
"Instances",
"Size",
)