bev-project/RMT-PPAD-main/examples
bevfusion fcf3ae0ea9 Complete project state snapshot: Phase 4B RMT-PPAD Integration
🎯 Training Status:
- Current Epoch: 2/10 (13.3% complete)
- Segmentation Dice: 0.9594
- Detection IoU: 0.5742
- Training stable with 8 GPUs

🔧 Technical Achievements:
-  RMT-PPAD Transformer segmentation decoder integrated
-  Task-specific GCA architecture optimized
-  Multi-scale feature fusion (180×180, 360×360, 600×600)
-  Adaptive scale weight learning implemented
-  BEVFusion multi-task framework enhanced

📊 Performance Highlights:
- Divider segmentation: 0.9793 Dice (excellent)
- Pedestrian crossing: 0.9812 Dice (excellent)
- Stop line: 0.9812 Dice (excellent)
- Carpark area: 0.9802 Dice (excellent)
- Walkway: 0.9401 Dice (good)
- Drivable area: 0.8959 Dice (good)

🛠️ Code Changes Included:
- Enhanced BEVFusion model (bevfusion.py)
- RMT-PPAD integration modules (rmtppad_integration.py)
- Transformer segmentation head (enhanced_transformer.py)
- GCA module optimizations (gca.py)
- Configuration updates (Phase 4B configs)
- Training scripts and automation tools
- Comprehensive documentation and analysis reports

📅 Snapshot Date: Fri Nov 14 09:06:09 UTC 2025
📍 Environment: Docker container
🎯 Phase: RMT-PPAD Integration Complete
2025-11-14 09:06:09 +00:00
..
YOLOv8-Action-Recognition Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-CPP-Inference Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-LibTorch-CPP-Inference Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-ONNXRuntime Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-ONNXRuntime-CPP Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-ONNXRuntime-Rust Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-OpenCV-ONNX-Python Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-OpenCV-int8-tflite-Python Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-OpenVINO-CPP-Inference Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-Region-Counter Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-SAHI-Inference-Video Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
YOLOv8-Segmentation-ONNXRuntime-Python Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
README.md Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
heatmaps.ipynb Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
hub.ipynb Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
object_counting.ipynb Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
object_tracking.ipynb Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00
tutorial.ipynb Complete project state snapshot: Phase 4B RMT-PPAD Integration 2025-11-14 09:06:09 +00:00

README.md

Ultralytics YOLOv8 Example Applications

This repository features a collection of real-world applications and walkthroughs, provided as either Python files or notebooks. Explore the examples below to see how YOLOv8 can be integrated into various applications.

Ultralytics YOLO Example Applications

Title Format Contributor
YOLO ONNX Detection Inference with C++ C++/ONNX Justas Bartnykas
YOLO OpenCV ONNX Detection Python OpenCV/Python/ONNX Farid Inawan
YOLOv8 .NET ONNX ImageSharp C#/ONNX/ImageSharp Compunet
YOLO .Net ONNX Detection C# C# .Net Samuel Stainback
YOLOv8 on NVIDIA Jetson(TensorRT and DeepStream) Python Lakshantha
YOLOv8 ONNXRuntime Python Python/ONNXRuntime Semih Demirel
YOLOv8 ONNXRuntime CPP C++/ONNXRuntime DennisJcy, Onuralp Sezer
RTDETR ONNXRuntime C# C#/ONNX Kayzwer
YOLOv8 SAHI Video Inference Python Muhammad Rizwan Munawar
YOLOv8 Region Counter Python Muhammad Rizwan Munawar
YOLOv8 Segmentation ONNXRuntime Python Python/ONNXRuntime jamjamjon
YOLOv8 LibTorch CPP C++/LibTorch Myyura
YOLOv8 OpenCV INT8 TFLite Python Python Wamiq Raza
YOLOv8 All Tasks ONNXRuntime Rust Rust/ONNXRuntime jamjamjon

How to Contribute

We greatly appreciate contributions from the community, including examples, applications, and guides. If you'd like to contribute, please follow these guidelines:

  1. Create a pull request (PR) with the title prefix [Example], adding your new example folder to the examples/ directory within the repository.
  2. Ensure your project adheres to the following standards:
    • Makes use of the ultralytics package.
    • Includes a README.md with clear instructions for setting up and running the example.
    • Avoids adding large files or dependencies unless they are absolutely necessary for the example.
    • Contributors should be willing to provide support for their examples and address related issues.

For more detailed information and guidance on contributing, please visit our contribution documentation.

If you encounter any questions or concerns regarding these guidelines, feel free to open a PR or an issue in the repository, and we will assist you in the contribution process.