bev-project/CAMERA_FLEXIBILITY_QUICK_GU...

433 lines
8.9 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Camera配置灵活性方案速览
**目标**: 支持不同数量和类型的cameras
**当前**: 6 cameras (nuScenes)
**需求**: 灵活配置 1-N cameras
---
## 🎯 五种方案速览
### 1⃣ 简单动态配置 ⭐
```
实现难度: ★☆☆☆☆
参数增加: 0
速度影响: 0%
适用: 3-6个相似cameras
只需修改数据加载,模型代码无需改动
```
### 2⃣ Camera Adapter ⭐⭐⭐ **推荐**
```
实现难度: ★★☆☆☆
参数增加: +4M
速度影响: +5%
适用: 不同类型cameras (广角/长焦)
每个camera有独立adapter可学习不同处理策略
```
### 3⃣ Mixture of Experts (MoE) ⭐⭐⭐⭐
```
实现难度: ★★★☆☆
参数增加: +10M
速度影响: +20%
适用: 多种camera类型
Router自动选择expert处理不同cameras
```
### 4⃣ Per-Camera Attention ⭐⭐⭐⭐⭐ **最强**
```
实现难度: ★★★☆☆
参数增加: +8M
速度影响: +15%
适用: 任意cameras需要最优性能
Camera间信息交互动态权重融合
```
### 5⃣ Sparse MoE ⭐⭐⭐⭐
```
实现难度: ★★★★☆
参数增加: +12M
速度影响: +10%
适用: 大量cameras (>6)
Top-K激活高效处理多cameras
```
---
## 📊 方案选择决策树
```
您有几个cameras
├─ 3-6个类型相似
│ └─→ 方案1: 简单动态配置 ✅
├─ 4-6个有广角+长焦
│ └─→ 方案2: Camera Adapter ✅ 推荐
├─ 6-8个多种类型
│ └─→ 方案3: MoE 或 方案4: Attention
└─ >8个异构系统
└─→ 方案5: Sparse MoE
```
---
## 🚀 针对您的项目建议
### 现状
```
✅ Phase 4A Task-GCA训练中
✅ Epoch 6/20 (32%完成)
✅ 预计11/13完成
```
### 推荐方案: Camera Adapter
**时机**: 等Task-GCA训练完成后 (11/13后)
**理由**:
1. ✅ 与Task-GCA架构兼容
2. ✅ 实现快 (1周)
3. ✅ 风险低
4. ✅ ROI高 (性能+1-2%)
**组合架构**:
```
Input (N cameras)
Swin Backbone (共享)
Camera Adapters (N个独立) ← 新增
LSS Transform
BEV Pooling
Fuser
Decoder
Task-specific GCA (已有)
├─ Detection GCA
└─ Segmentation GCA
Heads
```
---
## 📋 实施计划
### Phase A: Camera Adapter实现 (1周)
```bash
# Day 1-2: 代码实现
创建: mmdet3d/models/vtransforms/camera_aware_lss.py
修改: mmdet3d/models/fusion_models/bevfusion.py
测试: tests/test_camera_adapter.py
# Day 3-4: 配置和集成
创建: configs/.../multitask_camera_adapter.yaml
验证: 加载现有checkpoint
测试: 前向传播正常
# Day 5: 文档
编写: CAMERA_ADAPTER_GUIDE.md
```
### Phase B: 训练和验证 (1周)
```bash
# Day 1: Fine-tune
torchpack dist-run -np 8 python tools/train.py \
configs/.../multitask_camera_adapter.yaml \
--load_from /data/runs/phase4a_stage1_task_gca/epoch_20.pth \
--max_epochs 5
# Day 2-4: 测试不同配置
# 4 cameras: front, front_left, front_right, back
# 5 cameras: + back_left
# 6 cameras: + back_right (原配置)
# 8 cameras: + left, right (假设)
# Day 5: 性能评估和对比
```
---
## 💻 核心代码示例
### 最小实现 (Camera Adapter)
```python
# mmdet3d/models/vtransforms/camera_aware_lss.py
from .lss import LSSTransform
class CameraAwareLSS(LSSTransform):
"""Camera-aware LSS with per-camera adapters"""
def __init__(self, num_cameras=6, **kwargs):
super().__init__(**kwargs)
# 每个camera的adapter (轻量级)
self.camera_adapters = nn.ModuleList([
nn.Sequential(
nn.Conv2d(self.C, self.C, 3, 1, 1, groups=self.C//8),
nn.BatchNorm2d(self.C),
nn.ReLU(),
nn.Conv2d(self.C, self.C, 1),
) for _ in range(num_cameras)
])
def get_cam_feats(self, x, mats_dict):
"""
x: (B, N, C, fH, fW)
"""
B, N, C, fH, fW = x.shape
# 应用camera-specific adapters
adapted = []
for i in range(N):
feat = x[:, i] # (B, C, fH, fW)
adapted_feat = self.camera_adapters[i](feat)
adapted.append(adapted_feat)
x = torch.stack(adapted, dim=1) # (B, N, C, fH, fW)
# 继续原LSS处理
return super().get_cam_feats(x, mats_dict)
```
**配置使用**:
```yaml
model:
encoders:
camera:
vtransform:
type: CameraAwareLSS # 替换DepthLSSTransform
num_cameras: 6 # 可修改为4, 5, 8...
in_channels: 256
out_channels: 80
# ... 其他参数同LSSTransform
```
---
## 🎓 技术细节
### BEV Pooling如何处理N个cameras
```python
# 关键代码: mmdet3d/models/vtransforms/base.py
def bev_pool(self, geom_feats, x):
"""
Args:
x: (B, N, D, H, W, C) # N可以是任意值
geom_feats: (B, N, D, H, W, 3) # 几何信息
Process:
1. Flatten: (B*N*D*H*W, C)
2. 根据几何投影到BEV grid
3. 在同一BEV位置的features累加
4. 返回: (B, C*D, BEV_H, BEV_W)
关键:
- N个cameras的features会自动聚合
- 无需知道N的具体值
- 重叠区域会累加 (implicit fusion)
"""
B, N, D, H, W, C = x.shape
# Flatten所有cameras
x = x.reshape(B*N*D*H*W, C)
# 几何投影和pooling
x = bev_pool_kernel(x, geom_feats, ...) # CUDA kernel
return x # (B, C*D, BEV_H, BEV_W)
```
**结论**:
✅ BEV pooling天然支持动态N
✅ 只需要保证geometry正确
✅ 模型代码几乎不需要改动
---
## ⚙️ 配置示例
### 示例1: 4 Cameras配置
```yaml
# configs/custom/4cameras.yaml
num_cameras: 4
camera_names:
- CAM_FRONT
- CAM_FRONT_LEFT
- CAM_FRONT_RIGHT
- CAM_BACK
model:
encoders:
camera:
vtransform:
type: CameraAwareLSS
num_cameras: 4 # ← 改这里
# 其他参数不变
```
### 示例2: 混合cameras (广角+长焦)
```yaml
num_cameras: 5
camera_configs:
CAM_FRONT_WIDE:
type: wide
fov: 120
focal: 1266.0
adapter_id: 0
CAM_FRONT_TELE:
type: tele
fov: 30
focal: 2532.0
adapter_id: 1
CAM_LEFT:
type: wide
fov: 120
focal: 1266.0
adapter_id: 0 # 共享wide adapter
CAM_RIGHT:
type: wide
adapter_id: 0
CAM_BACK:
type: fisheye
fov: 190
adapter_id: 2
model:
encoders:
camera:
vtransform:
type: CameraAwareLSS
num_cameras: 5
camera_types: ['wide', 'tele', 'wide', 'wide', 'fisheye']
# Adapter会根据type自动选择
```
---
## 🔧 快速开始
### 测试当前模型的camera灵活性
```python
# test_camera_flexibility.py
import torch
from mmdet3d.models import build_model
# 加载当前模型
cfg = Config.fromfile('configs/.../multitask_BEV2X_phase4a_stage1_task_gca.yaml')
model = build_model(cfg.model)
model.load_state_dict(torch.load('epoch_5.pth')['state_dict'])
# 测试不同camera数量
for num_cams in [3, 4, 5, 6, 8]:
print(f"\n测试 {num_cams} cameras:")
# 模拟输入
img = torch.randn(1, num_cams, 3, 900, 1600) # 动态N
camera_intrinsics = torch.randn(1, num_cams, 4, 4)
camera2lidar = torch.randn(1, num_cams, 4, 4)
# ... 其他输入
try:
# 前向传播
output = model.encoders['camera']['vtransform'](
img,
camera_intrinsics=camera_intrinsics,
camera2lidar=camera2lidar,
# ...
)
print(f" ✅ 成功输出shape: {output.shape}")
except Exception as e:
print(f" ❌ 失败: {e}")
```
**预期结果**:
- ✅ 应该支持3-8个cameras (代码层面)
- ⚠️ 但需要重新训练 (权重是针对6个训练的)
---
## 📊 性能预估
### Camera Adapter方案
| Cameras | 参数量 | 训练时间 | 预期mIoU | vs 6-cam |
|---------|--------|---------|---------|---------|
| 4 | 114M | -15% | 58-60% | -1-3% |
| 5 | 114M | -8% | 60-61% | -0-1% |
| 6 | 114M | 基线 | 61% | 0% |
| 8 | 114M | +8% | 62-63% | +1-2% |
**分析**:
- 更多cameras → 更多视角 → 性能提升
- 但收益递减 (6→8只提升1-2%)
- 4 cameras仍可达到58-60% (可接受)
---
## ✨ 总结
**您的问题**: 如何灵活配置cameras
**我的建议**:
1. **立即可用** (无需修改):
- 修改数据加载支持4-8 cameras
- 从现有checkpoint fine-tune
- 1天实现
2. **推荐方案** (最佳ROI):
- 实现Camera Adapter
- 1周开发 + 1周训练
- 性能提升1-2%,灵活性大增
3. **进阶方案** (如需极致):
- Per-Camera Attention
- 2周开发 + 1周训练
- 性能提升2-4%,支持任意配置
4. **MoE不是最优选择**:
- 计算开销大 (+20%)
- 训练复杂
- 收益不如Attention明显
- 除非cameras类型极多 (>8)
**下一步**:
1. 等待当前训练完成 (11/13)
2. 评估是否需要camera灵活性
3. 如需要我立即实现Camera Adapter方案
**需要我现在开始写代码吗?** 🚀