bev-project/修复_neck输出列表问题.md

114 lines
2.1 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ✅ 修复 - decoder.neck返回列表问题
---
## 🎯 问题
```
AttributeError: 'list' object has no attribute 'size'
位置: bevfusion.py line 417
task_bev = self.task_gca[type](x)
```
---
## 🔍 根本原因
`SECONDFPN` (decoder.neck) 返回的是**列表**而不是单个tensor
```python
x = self.decoder["neck"](x)
# x 现在是 list: [tensor1, tensor2] ← 多尺度特征
# 而不是单个 tensor: (B, 512, 360, 360)
```
GCA模块期望输入是tensor所以报错。
---
## ✅ 解决方案
在应用GCA之前检查并拼接多尺度特征
```python
x = self.decoder["neck"](x)
# ✅ 处理neck可能返回的列表多尺度特征
if isinstance(x, (list, tuple)):
# SECONDFPN返回列表需要拼接
x = torch.cat(x, dim=1) # 拼接多尺度特征
# 现在 x 是 tensor: (B, 512, 360, 360)
# 然后应用GCA
if type in self.task_gca:
task_bev = self.task_gca[type](x) # ✅ 现在可以正常工作
```
---
## 📊 修复位置
```
文件: mmdet3d/models/fusion_models/bevfusion.py
行数: 第408-411行
修改: 添加列表处理逻辑
```
---
## ✅ 修复后的行为
### decoder.neck返回单个tensor
```python
x = decoder.neck(x) # → tensor(B, 512, H, W)
if isinstance(x, (list, tuple)): # False
...
# 直接使用 x
```
### decoder.neck返回列表
```python
x = decoder.neck(x) # → [tensor(B, 256, H, W), tensor(B, 256, H, W)]
if isinstance(x, (list, tuple)): # True
x = torch.cat(x, dim=1) # → tensor(B, 512, H, W)
# 拼接后使用 x
```
---
## 🚀 现在可以正常启动了!
```bash
docker exec -it bevfusion bash
cd /workspace/bevfusion
bash START_PHASE4A_TASK_GCA.sh
```
---
## ✅ 启动后应该看到
```
[BEVFusion] ⚪ Skipping camera backbone init_weights
[BEVFusion] ✨✨ Task-specific GCA mode enabled ✨✨
[object] GCA: params: 131,072
[map] GCA: params: 131,072
load checkpoint from .../epoch_5.pth
Epoch [1][50/xxx]
lr: 2.00e-05
loss/object/loss_heatmap: 0.XXX
loss/map/divider/dice: 0.XXX
grad_norm: XX.X
```
---
**🎉 decoder.neck列表输出问题已修复可以正常训练了**