import argparse import copy import os import mmcv import numpy as np import torch from mmcv import Config from mmcv.parallel import MMDistributedDataParallel from mmcv.runner import load_checkpoint from torchpack import distributed as dist from torchpack.utils.config import configs #from torchpack.utils.tqdm import tqdm from tqdm import tqdm from mmdet3d.core import LiDARInstance3DBoxes from mmdet3d.core.utils import visualize_camera, visualize_lidar, visualize_map from mmdet3d.datasets import build_dataloader, build_dataset from mmdet3d.models import build_model def recursive_eval(obj, globals=None): if globals is None: globals = copy.deepcopy(obj) if isinstance(obj, dict): for key in obj: obj[key] = recursive_eval(obj[key], globals) elif isinstance(obj, list): for k, val in enumerate(obj): obj[k] = recursive_eval(val, globals) elif isinstance(obj, str) and obj.startswith("${") and obj.endswith("}"): obj = eval(obj[2:-1], globals) obj = recursive_eval(obj, globals) return obj def main() -> None: dist.init() parser = argparse.ArgumentParser() parser.add_argument("config", metavar="FILE") parser.add_argument("--mode", type=str, default="gt", choices=["gt", "pred"]) parser.add_argument("--checkpoint", type=str, default=None) parser.add_argument("--split", type=str, default="val", choices=["train", "val"]) parser.add_argument("--bbox-classes", nargs="+", type=int, default=None) parser.add_argument("--bbox-score", type=float, default=None) parser.add_argument("--map-score", type=float, default=0.5) parser.add_argument("--out-dir", type=str, default="viz") args, opts = parser.parse_known_args() configs.load(args.config, recursive=True) configs.update(opts) cfg = Config(recursive_eval(configs), filename=args.config) torch.backends.cudnn.benchmark = cfg.cudnn_benchmark torch.cuda.set_device(dist.local_rank()) # build the dataloader dataset = build_dataset(cfg.data[args.split]) dataflow = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=True, shuffle=False, ) # build the model and load checkpoint if args.mode == "pred": model = build_model(cfg.model) load_checkpoint(model, args.checkpoint, map_location="cpu") model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, ) model.eval() for data in tqdm(dataflow): metas = data["metas"].data[0][0] name = "{}-{}".format(metas["timestamp"], metas["token"]) if args.mode == "pred": with torch.inference_mode(): outputs = model(**data) if args.mode == "gt" and "gt_bboxes_3d" in data: bboxes = data["gt_bboxes_3d"].data[0][0].tensor.numpy() labels = data["gt_labels_3d"].data[0][0].numpy() if args.bbox_classes is not None: indices = np.isin(labels, args.bbox_classes) bboxes = bboxes[indices] labels = labels[indices] bboxes[..., 2] -= bboxes[..., 5] / 2 bboxes = LiDARInstance3DBoxes(bboxes, box_dim=9) elif args.mode == "pred" and "boxes_3d" in outputs[0]: bboxes = outputs[0]["boxes_3d"].tensor.numpy() scores = outputs[0]["scores_3d"].numpy() labels = outputs[0]["labels_3d"].numpy() if args.bbox_classes is not None: indices = np.isin(labels, args.bbox_classes) bboxes = bboxes[indices] scores = scores[indices] labels = labels[indices] if args.bbox_score is not None: indices = scores >= args.bbox_score bboxes = bboxes[indices] scores = scores[indices] labels = labels[indices] bboxes[..., 2] -= bboxes[..., 5] / 2 bboxes = LiDARInstance3DBoxes(bboxes, box_dim=9) else: bboxes = None labels = None if args.mode == "gt" and "gt_masks_bev" in data: masks = data["gt_masks_bev"].data[0].numpy() masks = masks.astype(np.bool) elif args.mode == "pred" and "masks_bev" in outputs[0]: masks = outputs[0]["masks_bev"].numpy() masks = masks >= args.map_score else: masks = None if "img" in data: for k, image_path in enumerate(metas["filename"]): image = mmcv.imread(image_path) visualize_camera( os.path.join(args.out_dir, f"camera-{k}", f"{name}.png"), image, bboxes=bboxes, labels=labels, transform=metas["lidar2image"][k], classes=cfg.object_classes, ) if "points" in data: lidar = data["points"].data[0][0].numpy() visualize_lidar( os.path.join(args.out_dir, "lidar", f"{name}.png"), lidar, bboxes=bboxes, labels=labels, xlim=[cfg.point_cloud_range[d] for d in [0, 3]], ylim=[cfg.point_cloud_range[d] for d in [1, 4]], classes=cfg.object_classes, ) if masks is not None: visualize_map( os.path.join(args.out_dir, "map", f"{name}.png"), masks, classes=cfg.map_classes, ) if __name__ == "__main__": main()