import torch from mmcv.cnn import NORM_LAYERS from mmcv.runner import force_fp32 from torch import distributed as dist from torch import nn as nn from torch.autograd.function import Function class AllReduce(Function): @staticmethod def forward(ctx, input): input_list = [torch.zeros_like(input) for k in range(dist.get_world_size())] # Use allgather instead of allreduce in-place operations is unreliable dist.all_gather(input_list, input, async_op=False) inputs = torch.stack(input_list, dim=0) return torch.sum(inputs, dim=0) @staticmethod def backward(ctx, grad_output): dist.all_reduce(grad_output, async_op=False) return grad_output @NORM_LAYERS.register_module("naiveSyncBN1d") class NaiveSyncBatchNorm1d(nn.BatchNorm1d): """Syncronized Batch Normalization for 3D Tensors. Note: This implementation is modified from https://github.com/facebookresearch/detectron2/ `torch.nn.SyncBatchNorm` has known unknown bugs. It produces significantly worse AP (and sometimes goes NaN) when the batch size on each worker is quite different (e.g., when scale augmentation is used). In 3D detection, different workers has points of different shapes, whish also cause instability. Use this implementation before `nn.SyncBatchNorm` is fixed. It is slower than `nn.SyncBatchNorm`. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fp16_enabled = False # customized normalization layer still needs this decorator # to force the input to be fp32 and the output to be fp16 # TODO: make mmcv fp16 utils handle customized norm layers @force_fp32(out_fp16=True) def forward(self, input): assert ( input.dtype == torch.float32 ), f"input should be in float32 type, got {input.dtype}" if dist.get_world_size() == 1 or not self.training: return super().forward(input) assert input.shape[0] > 0, "SyncBN does not support empty inputs" C = input.shape[1] mean = torch.mean(input, dim=[0, 2]) meansqr = torch.mean(input * input, dim=[0, 2]) vec = torch.cat([mean, meansqr], dim=0) vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size()) mean, meansqr = torch.split(vec, C) var = meansqr - mean * mean self.running_mean += self.momentum * (mean.detach() - self.running_mean) self.running_var += self.momentum * (var.detach() - self.running_var) invstd = torch.rsqrt(var + self.eps) scale = self.weight * invstd bias = self.bias - mean * scale scale = scale.reshape(1, -1, 1) bias = bias.reshape(1, -1, 1) return input * scale + bias @NORM_LAYERS.register_module("naiveSyncBN2d") class NaiveSyncBatchNorm2d(nn.BatchNorm2d): """Syncronized Batch Normalization for 4D Tensors. Note: This implementation is modified from https://github.com/facebookresearch/detectron2/ `torch.nn.SyncBatchNorm` has known unknown bugs. It produces significantly worse AP (and sometimes goes NaN) when the batch size on each worker is quite different (e.g., when scale augmentation is used). This phenomenon also occurs when the multi-modality feature fusion modules of multi-modality fusion_models use SyncBN. Use this implementation before `nn.SyncBatchNorm` is fixed. It is slower than `nn.SyncBatchNorm`. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fp16_enabled = False # customized normalization layer still needs this decorator # to force the input to be fp32 and the output to be fp16 # TODO: make mmcv fp16 utils handle customized norm layers @force_fp32(out_fp16=True) def forward(self, input): assert ( input.dtype == torch.float32 ), f"input should be in float32 type, got {input.dtype}" if dist.get_world_size() == 1 or not self.training: return super().forward(input) assert input.shape[0] > 0, "SyncBN does not support empty inputs" C = input.shape[1] mean = torch.mean(input, dim=[0, 2, 3]) meansqr = torch.mean(input * input, dim=[0, 2, 3]) vec = torch.cat([mean, meansqr], dim=0) vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size()) mean, meansqr = torch.split(vec, C) var = meansqr - mean * mean self.running_mean += self.momentum * (mean.detach() - self.running_mean) self.running_var += self.momentum * (var.detach() - self.running_var) invstd = torch.rsqrt(var + self.eps) scale = self.weight * invstd bias = self.bias - mean * scale scale = scale.reshape(1, -1, 1, 1) bias = bias.reshape(1, -1, 1, 1) return input * scale + bias