checkpoint_config: interval: 1 data: samples_per_gpu: 1 workers_per_gpu: 0 log_config: hooks: - type: TextLoggerHook interval: 50 lr_config: min_lr_ratio: 0.001 policy: CosineAnnealing warmup: linear warmup_iters: 500 warmup_ratio: 0.33333333 model: encoders: lidar: backbone: encoder_channels: - - 16 - 16 - 32 - - 32 - 32 - 64 - - 64 - 64 - 128 - - 128 - 128 encoder_paddings: - - 0 - 0 - 1 - - 0 - 0 - 1 - - 0 - 0 - - 1 - 1 - 0 - - 0 - 0 in_channels: 5 order: - conv - norm - act output_channels: 128 sparse_shape: - 1440 - 1440 - 41 type: SparseEncoder voxelize: max_num_points: 10 max_voxels: - 120000 - 160000 point_cloud_range: - -54.0 - -54.0 - -5.0 - 54.0 - 54.0 - 3.0 voxel_size: - 0.075 - 0.075 - 0.2 fuser: in_channels: - 256 out_channels: 256 type: ConvFuser heads: map: classes: - drivable_area - ped_crossing - walkway - stop_line - carpark_area - divider deep_supervision: true dice_weight: 0.5 focal_alpha: 0.25 focal_gamma: 2.0 grid_transform: input_scope: - - -54.0 - 54.0 - 0.75 - - -54.0 - 54.0 - 0.75 output_scope: - - -50 - 50 - 0.167 - - -50 - 50 - 0.167 in_channels: 256 loss: focal type: EnhancedBEVSegmentationHead use_dice_loss: true type: BEVFusion optimizer: lr: 0.0001 type: AdamW runner: max_epochs: 1 type: EpochBasedRunner