#!/bin/bash # 多任务训练最终版本 set -e export PATH=/opt/conda/bin:$PATH cd /workspace/bevfusion echo "==========================================" echo "BEVFusion 多任务训练" echo "任务: 3D检测 + BEV分割(同时训练)" echo "==========================================" echo "" echo "配置信息:" echo " 配置: multitask.yaml (检测+分割)" echo " GPU: 8x Tesla V100S (32GB)" echo " Epochs: 20" echo " 优化: workers_per_gpu=0" echo "" echo "预计训练时间: 28-32小时" echo "预期性能:" echo " - 检测: mAP ~67-69%" echo " - 分割: mIoU ~61-62%" echo "" echo "模型特点:" echo " - 一个模型同时输出检测和分割" echo " - 共享特征提取(encoder/fuser/decoder)" echo " - 两个独立的任务头(object + map)" echo " - 两个任务的梯度同时更新模型" echo "" echo "==========================================" echo "" torchpack dist-run -np 8 python tools/train.py \ configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask.yaml \ --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \ --load_from pretrained/lidar-only-det.pth \ --data.workers_per_gpu 0 echo "" echo "==========================================" echo "多任务训练完成!" echo "=========================================="