#!/bin/bash # BEVFusion 训练启动脚本 # 使用前请选择要训练的任务(取消注释对应的命令) set -e # 设置conda环境 export PATH=/opt/conda/bin:$PATH # 切换到项目目录 cd /workspace/bevfusion echo "==========================================" echo "BEVFusion 训练启动" echo "==========================================" echo "" echo "硬件配置:" echo " GPU: 8x Tesla V100S (32GB)" echo " 总显存: 256GB" echo "" echo "软件环境:" echo " Python: $(python --version 2>&1)" echo " PyTorch: $(python -c 'import torch; print(torch.__version__)')" echo " CUDA: $(python -c 'import torch; print(torch.cuda.is_available())')" echo "" echo "数据集:" echo " 位置: /data/nuscenes (已软链接到 ./data)" echo "" echo "预训练模型:" echo " Camera Backbone: pretrained/swint-nuimages-pretrained.pth" echo " LiDAR Model: pretrained/lidar-only-det.pth" echo "" echo "==========================================" echo "" # ============================================ # 选择要训练的任务(取消注释对应的命令) # ============================================ # 任务1: 3D目标检测训练(推荐) # 预计时间:20-24小时,预期性能:mAP ~68-70%, NDS ~71-72% echo "开始训练: 3D目标检测 (Camera + LiDAR)" echo "配置: 8 GPU, TransFusion, SwinTransformer" echo "" torchpack dist-run -np 8 python tools/train.py \ configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/convfuser.yaml \ --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \ --load_from pretrained/lidar-only-det.pth # ============================================ # 其他训练选项(需要时取消注释) # ============================================ # 任务2: BEV地图分割训练 # 预计时间:12-15小时,预期性能:mIoU ~62-63% # echo "开始训练: BEV地图分割 (Camera + LiDAR)" # torchpack dist-run -np 8 python tools/train.py \ # configs/nuscenes/seg/fusion-bev256d2-lss.yaml \ # --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth # 任务3: 多任务训练(检测 + 分割) # 预计时间:28-32小时 # echo "开始训练: 多任务 (检测 + 分割)" # torchpack dist-run -np 8 python tools/train.py \ # configs/nuscenes/multitask/fusion-det-seg-swint.yaml \ # --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \ # --load_from pretrained/lidar-only-det.pth echo "" echo "==========================================" echo "训练完成!" echo "=========================================="