#!/bin/bash # Phase 4A: BEV 2x分辨率提升训练 - 环境修复版 set -e # 设置完整的环境变量 export PATH=/opt/conda/bin:$PATH export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH export PYTHONPATH=/workspace/bevfusion:$PYTHONPATH # 确保符号链接存在 if [ ! -L "/opt/conda/lib/python3.8/site-packages/torch/lib/libtorch_cuda_cu.so" ]; then echo "创建必要的符号链接..." cd /opt/conda/lib/python3.8/site-packages/torch/lib ln -sf libtorch_cuda.so libtorch_cuda_cu.so ln -sf libtorch_cuda.so libtorch_cuda_cpp.so ln -sf libtorch_cpu.so libtorch_cpu_cpp.so fi cd /workspace/bevfusion echo "========================================================================" echo "Phase 4A: BEV 2x分辨率提升训练" echo "========================================================================" echo "配置: BEV 0.15m分辨率 (2倍提升)" echo "Decoder: 4层完整版 [256, 256, 128, 128]" echo "从epoch_23.pth加载所有权重" echo "========================================================================" echo "" echo "关键配置:" echo " - BEV分辨率: 0.3m → 0.15m (720×720)" echo " - GT标签: 0.25m → 0.125m (800×800)" echo " - Decoder: 2层 → 4层" echo " - Deep Supervision: 启用" echo " - Dice Loss: 启用" echo " - GPU数量: 4 (显存优化)" echo " - Batch: 1/GPU (显存限制)" echo " - Workers: 4 (参考Phase 3成功配置)" echo "" echo "预期性能提升:" echo " - Stop Line IoU: 0.27 → 0.42+ (+55%)" echo " - Divider IoU: 0.19 → 0.35+ (+84%)" echo " - 整体mIoU: 0.41 → 0.54+ (+32%)" echo "" echo "预计训练时间: 12.5天" echo "========================================================================" echo "" # 验证环境 echo "环境验证..." python -c "import torch; print('✓ PyTorch:', torch.__version__)" python -c "from mmcv.ops import nms_match; import mmcv; print('✓ mmcv:', mmcv.__version__)" || { echo "❌ mmcv加载失败,请检查环境" exit 1 } echo "✓ 环境验证成功" echo "" # 创建日志文件 LOG_FILE="phase4a_bev2x_$(date +%Y%m%d_%H%M%S).log" echo "开始训练..." echo "日志文件: $LOG_FILE" echo "" # 使用环境变量包装的方式启动训练 LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH \ PATH=/opt/conda/bin:$PATH \ /opt/conda/bin/torchpack dist-run -np 4 /opt/conda/bin/python tools/train.py \ configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_BEV2X_phase4a.yaml \ --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \ --load_from runs/enhanced_from_epoch19/epoch_23.pth \ --data.samples_per_gpu 1 \ --data.workers_per_gpu 0 \ 2>&1 | tee "$LOG_FILE" echo "" echo "========================================================================" echo "训练完成!日志保存在: $LOG_FILE" echo "========================================================================"