#!/bin/bash # 简化版评估脚本 - 使用单GPU快速评估 # 使用GPU 7,最小资源占用 set -e export PATH=/opt/conda/bin:$PATH export LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH export PYTHONPATH=/workspace/bevfusion:$PYTHONPATH cd /workspace/bevfusion echo "========================================================================" echo "Phase 3 Epoch 23 快速评估 (单GPU)" echo "========================================================================" echo "Checkpoint: epoch_23.pth" echo "使用GPU: 7 (不影响训练)" echo "========================================================================" echo "" # 创建评估输出目录 EVAL_DIR="eval_results/phase3_epoch23_quick_$(date +%Y%m%d_%H%M%S)" mkdir -p "$EVAL_DIR" CONFIG="configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_enhanced_phase1_HIGHRES.yaml" CHECKPOINT="runs/enhanced_from_epoch19/epoch_23.pth" echo "开始评估..." echo "" # 使用GPU 4-7进行分布式评估(4卡,避免与训练GPU 0-3冲突) CUDA_VISIBLE_DEVICES=4,5,6,7 \ LD_LIBRARY_PATH=/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:$LD_LIBRARY_PATH \ PATH=/opt/conda/bin:$PATH \ /opt/conda/bin/torchpack dist-run -np 4 /opt/conda/bin/python tools/test.py \ "$CONFIG" \ "$CHECKPOINT" \ --eval bbox \ --out "$EVAL_DIR/results.pkl" \ 2>&1 | tee "$EVAL_DIR/eval.log" echo "" echo "========================================================================" echo "评估完成!结果保存在: $EVAL_DIR" echo "========================================================================"