import argparse import time import torch from mmcv import Config from mmcv.parallel import MMDataParallel from mmcv.runner import load_checkpoint, wrap_fp16_model from mmdet3d.datasets import build_dataloader, build_dataset from mmdet3d.models import build_fusion_model from torchpack.utils.config import configs from mmdet3d.utils import recursive_eval def parse_args(): parser = argparse.ArgumentParser(description="MMDet benchmark a model") parser.add_argument("config", help="test config file path") parser.add_argument("checkpoint", help="checkpoint file") parser.add_argument("--samples", default=2000, help="samples to benchmark") parser.add_argument("--log-interval", default=50, help="interval of logging") parser.add_argument("--fp16", action="store_true") args = parser.parse_args() return args def main(): args = parse_args() configs.load(args.config, recursive=True) cfg = Config(recursive_eval(configs), filename=args.config) # set cudnn_benchmark if cfg.get("cudnn_benchmark", False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=False, shuffle=False, ) # build the model and load checkpoint cfg.model.train_cfg = None model = build_fusion_model(cfg.model, test_cfg=cfg.get("test_cfg")) if args.fp16: wrap_fp16_model(model) load_checkpoint(model, args.checkpoint, map_location="cpu") model = MMDataParallel(model, device_ids=[0]) model.eval() # the first several iterations may be very slow so skip them num_warmup = 5 pure_inf_time = 0 # benchmark with several samples and take the average for i, data in enumerate(data_loader): torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): model(return_loss=False, rescale=True, **data) torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if i >= num_warmup: pure_inf_time += elapsed if (i + 1) % args.log_interval == 0: fps = (i + 1 - num_warmup) / pure_inf_time print( f"Done image [{i + 1:<3}/ {args.samples}], " f"fps: {fps:.1f} img / s" ) if (i + 1) == args.samples: pure_inf_time += elapsed fps = (i + 1 - num_warmup) / pure_inf_time print(f"Overall fps: {fps:.1f} img / s") break if __name__ == "__main__": main()