model: heads: object: type: CenterHead in_channels: null train_cfg: point_cloud_range: ${point_cloud_range} grid_size: [1024, 1024, 1] voxel_size: ${voxel_size} out_size_factor: 8 dense_reg: 1 gaussian_overlap: 0.1 max_objs: 500 min_radius: 2 code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2] test_cfg: post_center_limit_range: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0] max_per_img: 500 max_pool_nms: false min_radius: [4, 12, 10, 1, 0.85, 0.175] score_threshold: 0.1 out_size_factor: 8 voxel_size: ${voxel_size[:2]} nms_type: rotate pre_max_size: 1000 post_max_size: 83 nms_thr: 0.2 tasks: - ["car"] - ["truck", "construction_vehicle"] - ["bus", "trailer"] - ["barrier"] - ["motorcycle", "bicycle"] - ["pedestrian", "traffic_cone"] common_heads: reg: [2, 2] height: [1, 2] dim: [3, 2] rot: [2, 2] vel: [2, 2] share_conv_channel: 64 bbox_coder: type: CenterPointBBoxCoder pc_range: ${point_cloud_range} post_center_range: [-61.2, -61.2, -10.0, 61.2, 61.2, 10.0] max_num: 500 score_threshold: 0.1 out_size_factor: 8 voxel_size: ${voxel_size[:2]} code_size: 9 separate_head: type: SeparateHead init_bias: -2.19 final_kernel: 3 loss_cls: type: GaussianFocalLoss reduction: mean loss_bbox: type: L1Loss reduction: mean loss_weight: 0.25 norm_bbox: true