# data: # train: # dataset: # ann_file: nuscenes_radar/nuscenes_radar_infos_train_radar.pkl # val: # ann_file: nuscenes_radar/nuscenes_radar_infos_val_radar.pkl # test: # ann_file: nuscenes_radar/nuscenes_radar_infos_val_radar.pkl model: decoder: backbone: type: GeneralizedResNet in_channels: 336 blocks: - [2, 160, 2] - [2, 320, 2] - [2, 640, 1] neck: type: LSSFPN in_indices: [-1, 0] in_channels: [640, 160] out_channels: 256 scale_factor: 2 heads: object: in_channels: 256 optimizer: type: AdamW lr: 2.0e-4 weight_decay: 0.01 paramwise_cfg: custom_keys: absolute_pos_embed: decay_mult: 0 relative_position_bias_table: decay_mult: 0 optimizer_config: grad_clip: max_norm: 35 norm_type: 2 lr_config: policy: CosineAnnealing warmup: linear warmup_iters: 500 warmup_ratio: 0.33333333 min_lr_ratio: 1.0e-3