import torch from torch.autograd import Function from . import furthest_point_sample_ext class FurthestPointSampling(Function): """Furthest Point Sampling. Uses iterative furthest point sampling to select a set of features whose corresponding points have the furthest distance. """ @staticmethod def forward(ctx, points_xyz: torch.Tensor, num_points: int) -> torch.Tensor: """forward. Args: points_xyz (Tensor): (B, N, 3) where N > num_points. num_points (int): Number of points in the sampled set. Returns: Tensor: (B, num_points) indices of the sampled points. """ assert points_xyz.is_contiguous() B, N = points_xyz.size()[:2] output = torch.cuda.IntTensor(B, num_points) temp = torch.cuda.FloatTensor(B, N).fill_(1e10) furthest_point_sample_ext.furthest_point_sampling_wrapper( B, N, num_points, points_xyz, temp, output ) ctx.mark_non_differentiable(output) return output @staticmethod def backward(xyz, a=None): return None, None class FurthestPointSamplingWithDist(Function): """Furthest Point Sampling With Distance. Uses iterative furthest point sampling to select a set of features whose corresponding points have the furthest distance. """ @staticmethod def forward(ctx, points_dist: torch.Tensor, num_points: int) -> torch.Tensor: """forward. Args: points_dist (Tensor): (B, N, N) Distance between each point pair. num_points (int): Number of points in the sampled set. Returns: Tensor: (B, num_points) indices of the sampled points. """ assert points_dist.is_contiguous() B, N, _ = points_dist.size() output = points_dist.new_zeros([B, num_points], dtype=torch.int32) temp = points_dist.new_zeros([B, N]).fill_(1e10) furthest_point_sample_ext.furthest_point_sampling_with_dist_wrapper( B, N, num_points, points_dist, temp, output ) ctx.mark_non_differentiable(output) return output @staticmethod def backward(xyz, a=None): return None, None furthest_point_sample = FurthestPointSampling.apply furthest_point_sample_with_dist = FurthestPointSamplingWithDist.apply