import torch from . import roiaware_pool3d_ext def points_in_boxes_gpu(points, boxes): """Find points that are in boxes (CUDA) Args: points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR coordinate boxes (torch.Tensor): [B, T, 7], num_valid_boxes <= T, [x, y, z, w, l, h, ry] in LiDAR coordinate, (x, y, z) is the bottom center Returns: box_idxs_of_pts (torch.Tensor): (B, M), default background = -1 """ assert boxes.shape[0] == points.shape[0], ( f"Points and boxes should have the same batch size, " f"got {boxes.shape[0]} and {boxes.shape[0]}" ) assert boxes.shape[2] == 7, ( f"boxes dimension should be 7, " f"got unexpected shape {boxes.shape[2]}" ) assert points.shape[2] == 3, ( f"points dimension should be 3, " f"got unexpected shape {points.shape[2]}" ) batch_size, num_points, _ = points.shape box_idxs_of_pts = points.new_zeros((batch_size, num_points), dtype=torch.int).fill_(-1) # If manually put the tensor 'points' or 'boxes' on a device # which is not the current device, some temporary variables # will be created on the current device in the cuda op, # and the output will be incorrect. # Therefore, we force the current device to be the same # as the device of the tensors if it was not. # Please refer to https://github.com/open-mmlab/mmdetection3d/issues/305 # for the incorrect output before the fix. points_device = points.get_device() assert points_device == boxes.get_device(), "Points and boxes should be put on the same device" if torch.cuda.current_device() != points_device: torch.cuda.set_device(points_device) roiaware_pool3d_ext.points_in_boxes_gpu( boxes.contiguous(), points.contiguous(), box_idxs_of_pts ) return box_idxs_of_pts def points_in_boxes_cpu(points, boxes): """Find points that are in boxes (CPU) Note: Currently, the output of this function is different from that of points_in_boxes_gpu. Args: points (torch.Tensor): [npoints, 3] boxes (torch.Tensor): [N, 7], in LiDAR coordinate, (x, y, z) is the bottom center Returns: point_indices (torch.Tensor): (N, npoints) """ # TODO: Refactor this function as a CPU version of points_in_boxes_gpu assert boxes.shape[1] == 7, ( f"boxes dimension should be 7, " f"got unexpected shape {boxes.shape[2]}" ) assert points.shape[1] == 3, ( f"points dimension should be 3, " f"got unexpected shape {points.shape[2]}" ) point_indices = points.new_zeros((boxes.shape[0], points.shape[0]), dtype=torch.int) roiaware_pool3d_ext.points_in_boxes_cpu( boxes.float().contiguous(), points.float().contiguous(), point_indices ) return point_indices def points_in_boxes_batch(points, boxes): """Find points that are in boxes (CUDA) Args: points (torch.Tensor): [B, M, 3], [x, y, z] in LiDAR coordinate boxes (torch.Tensor): [B, T, 7], num_valid_boxes <= T, [x, y, z, w, l, h, ry] in LiDAR coordinate, (x, y, z) is the bottom center. Returns: box_idxs_of_pts (torch.Tensor): (B, M, T), default background = 0 """ assert boxes.shape[0] == points.shape[0], ( f"Points and boxes should have the same batch size, " f"got {boxes.shape[0]} and {boxes.shape[0]}" ) assert boxes.shape[2] == 7, ( f"boxes dimension should be 7, " f"got unexpected shape {boxes.shape[2]}" ) assert points.shape[2] == 3, ( f"points dimension should be 3, " f"got unexpected shape {points.shape[2]}" ) batch_size, num_points, _ = points.shape num_boxes = boxes.shape[1] box_idxs_of_pts = points.new_zeros((batch_size, num_points, num_boxes), dtype=torch.int).fill_( 0 ) # Same reason as line 25-32 points_device = points.get_device() assert points_device == boxes.get_device(), "Points and boxes should be put on the same device" if torch.cuda.current_device() != points_device: torch.cuda.set_device(points_device) roiaware_pool3d_ext.points_in_boxes_batch( boxes.contiguous(), points.contiguous(), box_idxs_of_pts ) return box_idxs_of_pts