import torch from torch.autograd import Function from typing import Tuple from . import interpolate_ext class ThreeInterpolate(Function): @staticmethod def forward( ctx, features: torch.Tensor, indices: torch.Tensor, weight: torch.Tensor ) -> torch.Tensor: """Performs weighted linear interpolation on 3 features. Args: features (Tensor): (B, C, M) Features descriptors to be interpolated from indices (Tensor): (B, n, 3) index three nearest neighbors of the target features in features weight (Tensor): (B, n, 3) weights of interpolation Returns: Tensor: (B, C, N) tensor of the interpolated features """ assert features.is_contiguous() assert indices.is_contiguous() assert weight.is_contiguous() B, c, m = features.size() n = indices.size(1) ctx.three_interpolate_for_backward = (indices, weight, m) output = torch.cuda.FloatTensor(B, c, n) interpolate_ext.three_interpolate_wrapper(B, c, m, n, features, indices, weight, output) return output @staticmethod def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Backward of three interpolate. Args: grad_out (Tensor): (B, C, N) tensor with gradients of outputs Returns: Tensor: (B, C, M) tensor with gradients of features """ idx, weight, m = ctx.three_interpolate_for_backward B, c, n = grad_out.size() grad_features = torch.cuda.FloatTensor(B, c, m).zero_() grad_out_data = grad_out.data.contiguous() interpolate_ext.three_interpolate_grad_wrapper( B, c, n, m, grad_out_data, idx, weight, grad_features.data ) return grad_features, None, None three_interpolate = ThreeInterpolate.apply