model: encoders: camera: null lidar: voxelize: max_num_points: 10 point_cloud_range: ${point_cloud_range} voxel_size: ${voxel_size} max_voxels: [90000, 120000] backbone: type: SparseEncoder in_channels: 5 sparse_shape: [1024, 1024, 41] output_channels: 128 order: - conv - norm - act encoder_channels: - [16, 16, 32] - [32, 32, 64] - [64, 64, 128] - [128, 128] encoder_paddings: - [0, 0, 1] - [0, 0, 1] - [0, 0, [1, 1, 0]] - [0, 0] block_type: basicblock fuser: null decoder: backbone: type: SECOND in_channels: 256 out_channels: [128, 256] layer_nums: [5, 5] layer_strides: [1, 2] norm_cfg: type: BN eps: 1.0e-3 momentum: 0.01 conv_cfg: type: Conv2d bias: false neck: type: SECONDFPN in_channels: [128, 256] out_channels: [256, 256] upsample_strides: [1, 2] norm_cfg: type: BN eps: 1.0e-3 momentum: 0.01 upsample_cfg: type: deconv bias: false use_conv_for_no_stride: true heads: map: in_channels: 512 optimizer: type: AdamW lr: 1.0e-4 optimizer_config: grad_clip: max_norm: 35 norm_type: 2 lr_config: policy: cyclic momentum_config: policy: cyclic