# Ultralytics YOLO 🚀, AGPL-3.0 license from collections import defaultdict import cv2 from ultralytics.utils.checks import check_imshow, check_requirements from ultralytics.utils.plotting import Annotator, colors check_requirements("shapely>=2.0.0") from shapely.geometry import Point, Polygon class QueueManager: """A class to manage the queue in a real-time video stream based on object tracks.""" def __init__( self, names, reg_pts=None, line_thickness=2, view_img=False, draw_tracks=False, ): """ Initializes the QueueManager with specified parameters for tracking and counting objects. Args: names (dict): A dictionary mapping class IDs to class names. reg_pts (list of tuples, optional): Points defining the counting region polygon. Defaults to a predefined rectangle. line_thickness (int, optional): Thickness of the annotation lines. Defaults to 2. view_img (bool, optional): Whether to display the image frames. Defaults to False. draw_tracks (bool, optional): Whether to draw tracks of the objects. Defaults to False. """ # Region & Line Information self.reg_pts = reg_pts if reg_pts is not None else [(20, 60), (20, 680), (1120, 680), (1120, 60)] self.counting_region = ( Polygon(self.reg_pts) if len(self.reg_pts) >= 3 else Polygon([(20, 60), (20, 680), (1120, 680), (1120, 60)]) ) # annotation Information self.tf = line_thickness self.view_img = view_img self.names = names # Class names # Object counting Information self.counts = 0 # Tracks info self.track_history = defaultdict(list) self.draw_tracks = draw_tracks # Check if environment supports imshow self.env_check = check_imshow(warn=True) def extract_and_process_tracks(self, tracks, im0): """Extracts and processes tracks for queue management in a video stream.""" # Initialize annotator and draw the queue region annotator = Annotator(im0, self.tf, self.names) self.counts = 0 # Reset counts every frame if tracks[0].boxes.id is not None: boxes = tracks[0].boxes.xyxy.cpu() clss = tracks[0].boxes.cls.cpu().tolist() track_ids = tracks[0].boxes.id.int().cpu().tolist() # Extract tracks for box, track_id, cls in zip(boxes, track_ids, clss): # Draw bounding box annotator.box_label(box, label=self.names[cls], color=colors(int(track_id), True)) # Update track history track_line = self.track_history[track_id] track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2))) if len(track_line) > 30: track_line.pop(0) # Draw track trails if enabled if self.draw_tracks: annotator.draw_centroid_and_tracks( track_line, color=colors(int(track_id), True), track_thickness=self.line_thickness, ) prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None # Check if the object is inside the counting region if len(self.reg_pts) >= 3: is_inside = self.counting_region.contains(Point(track_line[-1])) if prev_position is not None and is_inside: self.counts += 1 # Display queue counts label = f"Queue Counts : {str(self.counts)}" if label is not None: annotator.queue_counts_display( label, points=self.reg_pts, region_color=(255, 0, 255), txt_color=(104, 31, 17), ) if self.env_check and self.view_img: annotator.draw_region(reg_pts=self.reg_pts, thickness=self.tf * 2, color=(255, 0, 255)) cv2.imshow("Ultralytics YOLOv8 Queue Manager", im0) # Close window on 'q' key press if cv2.waitKey(1) & 0xFF == ord("q"): return def process_queue(self, im0, tracks): """ Main function to start the queue management process. Args: im0 (ndarray): Current frame from the video stream. tracks (list): List of tracks obtained from the object tracking process. """ self.extract_and_process_tracks(tracks, im0) # Extract and process tracks return im0 if __name__ == "__main__": classes_names = {0: "person", 1: "car"} # example class names queue_manager = QueueManager(classes_names)