#!/usr/bin/env python """ 分析multitask_enhanced_phase1_HIGHRES.yaml配置的网络结构和特征尺寸 Phase 1: 简化版高分辨率分割,专注ASPP + 高分辨率输出 """ import yaml import torch import numpy as np def analyze_highres_config(): """分析Phase 1高分辨率配置""" print("="*90) print("🎯 Phase 1 高分辨率BEV分割网络分析") print("="*90) # 解析配置参数 config_params = { 'input': { 'camera': {'views': 6, 'size': [256, 704], 'channels': 3}, 'lidar': {'points': '32线', 'range': [-54, 54], 'voxel_size': [0.075, 0.075, 0.2]} }, 'camera_encoder': { 'backbone': {'type': 'SwinTransformer', 'embed_dims': 96, 'depths': [2, 2, 6, 2], 'num_heads': [3, 6, 12, 24]}, 'neck': {'in_channels': [192, 384, 768], 'out_channels': 256, 'num_outs': 3}, 'vtransform': {'in_channels': 256, 'out_channels': 80, 'image_size': [256, 704], 'feature_size': [32, 88]} }, 'lidar_encoder': { 'voxelize': {'max_voxels': [120000, 160000], 'voxel_size': [0.075, 0.075, 0.2]}, 'backbone': {'sparse_shape': [1440, 1440, 41], 'output_channels': 128} }, 'decoder': { 'backbone': {'in_channels': 256, 'out_channels': [128, 256], 'layer_nums': [5, 5], 'layer_strides': [1, 2]}, 'neck': {'in_channels': [128, 256], 'out_channels': [256, 256], 'upsample_strides': [1, 2]} }, 'segmentation_head': { 'in_channels': 512, 'decoder_channels': [256, 128], # Phase 1简化版 'grid_transform': { 'input_scope': [[-54.0, 54.0, 0.75], [-54.0, 54.0, 0.75]], 'output_scope': [[-50, 50, 0.25], [-50, 50, 0.25]] } } } # 1. 输入规格 print("\n📥 1. 输入数据规格") print("-" * 60) input_spec = config_params['input'] print("相机输入:") print(f"├── 视角数量: {input_spec['camera']['views']}") print(f"├── 图像尺寸: {input_spec['camera']['size'][0]}×{input_spec['camera']['size'][1]}") print(f"├── 通道数: {input_spec['camera']['channels']} (RGB)") print(f"└── 总像素: {input_spec['camera']['size'][0] * input_spec['camera']['size'][1] * input_spec['camera']['views']:,}") print("\nLiDAR输入:") print(f"├── 激光雷达: {input_spec['lidar']['points']}") print(f"├── 检测范围: {input_spec['lidar']['range'][0]}m ~ {input_spec['lidar']['range'][1]}m") print(f"├── 体素尺寸: {input_spec['lidar']['voxel_size']}m") print(f"└── 稀疏形状: [1440, 1440, 41]") # 2. Camera Encoder (与Phase 4B相同) print("\n📷 2. Camera Encoder特征变化") print("-" * 60) camera_spec = config_params['camera_encoder'] print("SwinTransformer Backbone:") embed_dim = camera_spec['backbone']['embed_dims'] depths = camera_spec['backbone']['depths'] stage_outputs = [] H, W = input_spec['camera']['size'] current_H, current_W = H // 4, W // 4 # 初始patch大小4x4 for i, depth in enumerate(depths): if i > 0: # 从第二阶段开始下采样 current_H, current_W = current_H // 2, current_W // 2 embed_dim *= 2 stage_outputs.append({ 'stage': i+1, 'channels': embed_dim, 'height': current_H, 'width': current_W, 'tokens': current_H * current_W }) print(f"├── Stage {i+1}: {embed_dim}ch × {current_H}×{current_W} = {embed_dim * current_H * current_W:,} 参数") print("\nGeneralizedLSSFPN Neck:") neck_in = camera_spec['neck']['in_channels'] neck_out = camera_spec['neck']['out_channels'] print(f"├── 输入通道: {neck_in}") print(f"├── 输出通道: {neck_out} (统一)") print(f"└── 输出层数: {camera_spec['neck']['num_outs']}") fpn_outputs = [] for i, in_ch in enumerate(neck_in): stage = stage_outputs[i+1] # FPN使用Stage 2,3,4 fpn_outputs.append({ 'level': i+1, 'channels': neck_out, 'height': stage['height'], 'width': stage['width'] }) print(f"├── Level {i+1}: {in_ch}ch → {neck_out}ch, {stage['height']}×{stage['width']}") print("\nDepthLSSTransform (BEV投影):") vtrans = camera_spec['vtransform'] print(f"├── 输入通道: {vtrans['in_channels']}") print(f"├── 输出通道: {vtrans['out_channels']}") print(f"├── 图像尺寸: {vtrans['image_size']}") print(f"├── 特征尺寸: {vtrans['feature_size']}") # Camera BEV尺寸计算 (使用Phase 1配置) bev_range = 54 - (-54) # 108米 bev_resolution = 0.3 # 从xbound配置 bev_pixels = int(bev_range / bev_resolution) + 1 # 108 / 0.3 + 1 = 361 print(f"├── BEV范围: [-54, 54]m × [-54, 54]m = {bev_range}m × {bev_range}m") print(f"├── BEV分辨率: {bev_resolution}m/像素") print(f"├── BEV尺寸: {bev_pixels}×{bev_pixels} 像素") print(f"└── Camera BEV特征: {vtrans['out_channels']}ch × {bev_pixels}×{bev_pixels}") # 3. LiDAR Encoder (与Phase 4B相同) print("\n🔍 3. LiDAR Encoder特征变化") print("-" * 60) lidar_spec = config_params['lidar_encoder'] print("体素化 (Voxelization):") voxelize = lidar_spec['voxelize'] print(f"├── 最大体素数: {voxelize['max_voxels']}") print(f"├── 体素尺寸: {voxelize['voxel_size']}m") print(f"└── 稀疏形状: [1440, 1440, 41]") print("\nSparse Encoder Backbone:") backbone = lidar_spec['backbone'] sparse_shape = backbone['sparse_shape'] out_channels = backbone['output_channels'] print(f"├── 稀疏形状: {sparse_shape}") print(f"├── 输出通道: {out_channels}") print(f"├── 空间覆盖: 108.0m × 108.0m") print(f"└── LiDAR BEV特征: {out_channels}ch × {sparse_shape[0]}×{sparse_shape[1]}") # 4. 融合层 (与Phase 4B相同) print("\n🔗 4. 融合层 (Fusion)") print("-" * 60) camera_bev_channels = vtrans['out_channels'] # 80 lidar_bev_channels = out_channels # 128 fused_channels = 256 # 从fuser配置 print("ConvFuser:") print(f"├── Camera BEV: {camera_bev_channels}ch × {bev_pixels}×{bev_pixels}") print(f"├── LiDAR BEV: {lidar_bev_channels}ch × {sparse_shape[0]}×{sparse_shape[1]}") print(f"├── 融合后: {fused_channels}ch × {sparse_shape[0]}×{sparse_shape[1]}") print(f"└── 融合方式: 通道级拼接 + 1×1卷积") # 5. Decoder (与Phase 4B相同) print("\n🔄 5. Decoder特征变化") print("-" * 60) decoder_spec = config_params['decoder'] print("SECOND Backbone:") second_in = decoder_spec['backbone']['in_channels'] # 256 second_out = decoder_spec['backbone']['out_channels'] # [128, 256] layer_nums = decoder_spec['backbone']['layer_nums'] # [5, 5] layer_strides = decoder_spec['backbone']['layer_strides'] # [1, 2] print(f"├── 输入通道: {second_in}") print(f"├── 输出通道: {second_out}") print(f"├── 层数: {layer_nums}") print(f"├── 步长: {layer_strides}") second_features = [] input_size = sparse_shape[0] # 1440 # Stage 1: stride=1, 保持尺寸 stage1_out = second_out[0] # 128 stage1_size = input_size # 1440 second_features.append({ 'stage': 1, 'channels': stage1_out, 'size': stage1_size }) print(f"├── Stage 1: {stage1_out}ch × {stage1_size}×{stage1_size}") # Stage 2: stride=2, 下采样 stage2_out = second_out[1] # 256 stage2_size = input_size // 2 # 720 second_features.append({ 'stage': 2, 'channels': stage2_out, 'size': stage2_size }) print(f"└── Stage 2: {stage2_out}ch × {stage2_size}×{stage2_size}") print("\nSECONDFPN Neck:") fpn_in = decoder_spec['neck']['in_channels'] # [128, 256] fpn_out = decoder_spec['neck']['out_channels'] # [256, 256] upsample_strides = decoder_spec['neck']['upsample_strides'] # [1, 2] fpn_features = [] for i, (in_ch, out_ch, stride, feat) in enumerate(zip(fpn_in, fpn_out, upsample_strides, second_features)): if stride == 1: out_size = feat['size'] # 保持尺寸 else: # stride == 2 out_size = feat['size'] * 2 # 上采样 fpn_features.append({ 'level': i+1, 'channels': out_ch, 'size': out_size }) print(f"├── Level {i+1}: {in_ch}ch → {out_ch}ch, {feat['size']}×{feat['size']} → {out_size}×{out_size}") bev_neck_output = fpn_features[-1] # Level 2: 256ch × 1440×1440 print(f"└── BEV特征: {bev_neck_output['channels']}ch × {bev_neck_output['size']}×{bev_neck_output['size']}") # 6. 分割头 (Phase 1简化版) print("\n🎨 6. EnhancedBEVSegmentationHead (Phase 1)") print("-" * 60) seg_head = config_params['segmentation_head'] print("Phase 1配置特点:") print("├── 简化设计: 只启用ASPP") print("├── Deep Supervision: 关闭") print("├── Dice Loss: 关闭") print("├── Decoder: 简化版 [256, 128]") print("\nEnhancedBEVSegmentationHead结构:") print(f"├── 输入通道: {seg_head['in_channels']}") print(f"├── Decoder通道: {seg_head['decoder_channels']}") # Phase 1的处理流程 print("\n处理流程 (Phase 1):") bev_input_size = bev_neck_output['size'] # 1440 bev_input_channels = bev_neck_output['channels'] # 256 print(f"├── 输入BEV: {bev_input_channels}ch × {bev_input_size}×{bev_input_size}") # ASPP处理 (保持尺寸不变) print(f"├── ASPP: {bev_input_channels}ch → 256ch, 尺寸保持 {bev_input_size}×{bev_input_size}") # 简化解码器 (Phase 1) decoder_channels = seg_head['decoder_channels'] # [256, 128] current_size = bev_input_size for i, out_ch in enumerate(decoder_channels): print(f"├── Decoder Layer {i+1}: 256ch → {out_ch}ch, {current_size}×{current_size} (尺寸保持)") # 分类头 final_channels = decoder_channels[-1] # 128 num_classes = 6 # nuScenes BEV分割类别数 print(f"└── 分类器: {final_channels}ch → {num_classes}ch (每个类别独立预测)") # Grid Transform grid_trans = seg_head['grid_transform'] input_range = grid_trans['input_scope'][0][1] - grid_trans['input_scope'][0][0] # 108m input_res = grid_trans['input_scope'][0][2] # 0.75m/px input_pixels = int(input_range / input_res) + 1 # 144 + 1 = 145 output_range = grid_trans['output_scope'][0][1] - grid_trans['output_scope'][0][0] # 100m output_res = grid_trans['output_scope'][0][2] # 0.25m/px output_pixels = int(output_range / output_res) + 1 # 400 + 1 = 401 print("\nBEV Grid Transform:") print(f"├── 输入: {input_pixels-1}×{input_pixels-1} ({input_res}m/px)") print(f"├── 输出: {output_pixels-1}×{output_pixels-1} ({output_res}m/px)") print(f"├── 放大倍数: {(output_pixels-1) / (input_pixels-1):.1f}x") print(f"└── 分辨率提升: {input_res/output_res:.1f}x更精细") print("\n最终输出:") print(f"├── 分割图: {num_classes}类别 × {output_pixels-1}×{output_pixels-1}") print(f"├── 分辨率: {output_res}m/像素") print(f"├── 覆盖范围: -50m ~ 50m") print(f"└── 总像素数: {num_classes * (output_pixels-1) ** 2:,}") # 7. 内存和计算量对比 print("\n💾 7. Phase 1 vs Phase 4B 内存对比") print("-" * 60) # Phase 1内存计算 phase1_memory = { 'Camera BEV': bev_pixels * bev_pixels * 80 * 4, 'LiDAR BEV': sparse_shape[0] * sparse_shape[1] * 128 * 4, 'Fused BEV': sparse_shape[0] * sparse_shape[1] * 256 * 4, 'BEV Neck': bev_neck_output['size'] * bev_neck_output['size'] * bev_neck_output['channels'] * 4, 'Segmentation': (output_pixels-1) ** 2 * 6 * 4 } # Phase 4B内存计算 (从之前分析) phase4b_memory = { 'Camera BEV': 541 * 541 * 80 * 4, 'LiDAR BEV': 1440 * 1440 * 128 * 4, 'Fused BEV': 1440 * 1440 * 256 * 4, 'BEV Neck': 1440 * 1440 * 256 * 4, 'Segmentation': 598 * 598 * 6 * 4 } print("内存占用对比 (单batch, float32, MB):") print("组件".ljust(15), "Phase 1".ljust(10), "Phase 4B".ljust(10), "差异") print("-" * 55) total_p1 = 0 total_p4b = 0 for component in phase1_memory.keys(): p1_mb = phase1_memory[component] / (1024 * 1024) p4b_mb = phase4b_memory[component] / (1024 * 1024) diff = p4b_mb - p1_mb total_p1 += p1_mb total_p4b += p4b_mb print("12s" "8.1f" "8.1f" "+8.1f" if diff > 0 else "8.1f") print("-" * 55) print("12s" "8.1f" "8.1f" "+8.1f") # 8. Phase 1设计理念 print("\n🎯 8. Phase 1设计理念") print("-" * 60) phase1_design = { "目标": [ "验证高分辨率分割的可行性", "从简单的ASPP开始,避免复杂组件干扰", "建立分割性能baseline" ], "简化策略": [ "只启用ASPP多尺度特征", "关闭Deep Supervision减少训练复杂度", "关闭Dice Loss,使用纯Focal Loss", "简化Decoder为2层" ], "分辨率提升": [ "BEV输出从180×180提升到400×400", "分辨率从0.6m/px提升到0.25m/px", "3倍分辨率提升,理论上分割精度显著提高" ], "训练策略": [ "基于epoch_19.pth继续训练", "只训练4个epoch (19→23)", "降低学习率避免破坏预训练权重", "专注分割性能优化" ] } for category, items in phase1_design.items(): print(f"\n{category}:") for item in items: print(f"├── {item}") # 9. 预期性能提升 print("\n📈 9. 预期性能提升") print("-" * 60) performance_targets = [ ("分辨率提升", "180×180 → 400×400", "3倍像素数量"), ("分割精度", "理论上显著提升", "更细粒度特征表示"), ("车道线检测", "Divider/Stop Line", "预期IoU提升20-30%"), ("内存效率", "相比Phase 4B降低", "更简单的网络结构"), ("训练速度", "4个epoch完成", "快速验证高分辨率效果") ] print("Phase 1预期效果:") for target, value, note in performance_targets: print("15s" "20s" "15s") print("\n" + "="*90) print("🏁 Phase 1高分辨率配置分析完成!简化设计,专注验证高分辨率分割效果!") print("="*90) if __name__ == '__main__': analyze_highres_config()