bevfusion
|
fcf3ae0ea9
|
Complete project state snapshot: Phase 4B RMT-PPAD Integration
🎯 Training Status:
- Current Epoch: 2/10 (13.3% complete)
- Segmentation Dice: 0.9594
- Detection IoU: 0.5742
- Training stable with 8 GPUs
🔧 Technical Achievements:
- ✅ RMT-PPAD Transformer segmentation decoder integrated
- ✅ Task-specific GCA architecture optimized
- ✅ Multi-scale feature fusion (180×180, 360×360, 600×600)
- ✅ Adaptive scale weight learning implemented
- ✅ BEVFusion multi-task framework enhanced
📊 Performance Highlights:
- Divider segmentation: 0.9793 Dice (excellent)
- Pedestrian crossing: 0.9812 Dice (excellent)
- Stop line: 0.9812 Dice (excellent)
- Carpark area: 0.9802 Dice (excellent)
- Walkway: 0.9401 Dice (good)
- Drivable area: 0.8959 Dice (good)
🛠️ Code Changes Included:
- Enhanced BEVFusion model (bevfusion.py)
- RMT-PPAD integration modules (rmtppad_integration.py)
- Transformer segmentation head (enhanced_transformer.py)
- GCA module optimizations (gca.py)
- Configuration updates (Phase 4B configs)
- Training scripts and automation tools
- Comprehensive documentation and analysis reports
📅 Snapshot Date: Fri Nov 14 09:06:09 UTC 2025
📍 Environment: Docker container
🎯 Phase: RMT-PPAD Integration Complete
|
2025-11-14 09:06:09 +00:00 |