Update results on nuScenes and Waymo test set (#222)
This commit is contained in:
parent
0e5b9edbc1
commit
da751a2c9f
12
README.md
12
README.md
|
|
@ -23,12 +23,24 @@ Multi-sensor fusion is essential for an accurate and reliable autonomous driving
|
|||
|
||||
## Results
|
||||
|
||||
### 3D Object Detection (on Waymo test)
|
||||
|
||||
| Model | mAP-L1 | mAPH-L1 | mAP-L2 | mAPH-L2 |
|
||||
| :-------: | :------: | :--: | :--: | :--: |
|
||||
| [BEVFusion](https://waymo.com/open/challenges/entry/?challenge=DETECTION_3D&challengeId=DETECTION_3D&emailId=f58eed96-8bb3×tamp=1658347965704580) | 82.72 | 81.35 | 77.65 | 76.33 |
|
||||
| [BEVFusion-TTA](https://waymo.com/open/challenges/entry/?challenge=DETECTION_3D&challengeId=DETECTION_3D&emailId=94ddc185-d2ce×tamp=1663562767759105) | 86.04 | 84.76 | 81.22 | 79.97 |
|
||||
|
||||
Here, BEVFusion only uses a single model without any test time augmentation. BEVFusion-TTA uses single model with test-time augmentation and no model ensembling is applied.
|
||||
|
||||
### 3D Object Detection (on nuScenes test)
|
||||
|
||||
| Model | Modality | mAP | NDS |
|
||||
| :-------: | :------: | :--: | :--: |
|
||||
| BEVFusion-e | C+L | 74.99 | 76.09 |
|
||||
| BEVFusion | C+L | 70.23 | 72.88 |
|
||||
| BEVFusion-base* | C+L | 71.72 | 73.83 |
|
||||
|
||||
*: We scaled up MACs of the model to match the computation cost of concurrent work.
|
||||
|
||||
### 3D Object Detection (on nuScenes validation)
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue