Release training configurations for fusion models (#257)

* [Major] Add fusion model configs.

* [Minor] Update training instructions.
This commit is contained in:
Haotian (Ken) Tang 2022-12-04 22:47:29 -05:00 committed by GitHub
parent da751a2c9f
commit 3d91980d21
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 46 additions and 1 deletions

View File

@ -183,6 +183,18 @@ For LiDAR-only BEV segmentation model, please run:
torchpack dist-run -np 8 python tools/train.py configs/nuscenes/seg/lidar-centerpoint-bev128.yaml
```
For BEVFusion detection model, please run:
```bash
torchpack dist-run -np 8 python tools/train.py configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/convfuser.yaml --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth --load_from pretrained/lidar-only-det.pth
```
For BEVFusion segmentation model, please run:
```bash
torchpack dist-run -np 8 python tools/train.py configs/nuscenes/seg/fusion-bev256d2-lss.yaml --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth
```
Note: please run `tools/test.py` separately after training to get the final evaluation metrics.
## FAQs
Q: Can we directly use the info files prepared by mmdetection3d?

View File

@ -53,3 +53,10 @@ model:
- [0, 0, [1, 1, 0]]
- [0, 0]
block_type: basicblock
lr_config: null
optimizer:
lr: 2.0e-4
max_epochs: 6

View File

@ -43,3 +43,9 @@ model:
test_cfg:
grid_size: [1440, 1440, 41]
lr_config:
policy: CosineAnnealing
warmup: linear
warmup_iters: 500
warmup_ratio: 0.33333333
min_lr_ratio: 1.0e-3

View File

@ -17,6 +17,9 @@ model:
out_indices: [1, 2, 3]
with_cp: false
convert_weights: true
init_cfg:
type: Pretrained
checkpoint: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
neck:
type: GeneralizedLSSFPN
in_channels: [192, 384, 768]
@ -104,7 +107,24 @@ model:
map:
in_channels: 512
optimizer:
type: AdamW
lr: 1.0e-4
weight_decay: 0.01
paramwise_cfg:
custom_keys:
absolute_pos_embed:
decay_mult: 0
relative_position_bias_table:
decay_mult: 0
optimizer_config:
grad_clip:
max_norm: 35
norm_type: 2
lr_config:
policy: cyclic
momentum_config:
policy: cyclic