bev-project/mmdet3d/ops/spconv/functional.py

124 lines
3.9 KiB
Python
Raw Normal View History

2022-06-03 12:21:18 +08:00
# Copyright 2019 Yan Yan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
from . import ops as ops
class SparseConvFunction(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.half)
def forward(
ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out
):
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(
features, filters, indice_pairs, indice_pair_num, num_activate_out, False
)
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num, False
)
return input_bp, filters_bp, None, None, None
class SparseInverseConvFunction(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.half)
def forward(
ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out
):
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(
features,
filters,
indice_pairs,
indice_pair_num,
num_activate_out,
True,
False,
)
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num, True, False
)
return input_bp, filters_bp, None, None, None
class SubMConvFunction(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.half)
def forward(
ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out
):
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
return ops.indice_conv(
features,
filters,
indice_pairs,
indice_pair_num,
num_activate_out,
False,
True,
)
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
input_bp, filters_bp = ops.indice_conv_backward(
features, filters, grad_output, indice_pairs, indice_pair_num, False, True
)
return input_bp, filters_bp, None, None, None
class SparseMaxPoolFunction(Function):
@staticmethod
@custom_fwd(cast_inputs=torch.half)
def forward(ctx, features, indice_pairs, indice_pair_num, num_activate_out):
out = ops.indice_maxpool(
features, indice_pairs, indice_pair_num, num_activate_out
)
ctx.save_for_backward(indice_pairs, indice_pair_num, features, out)
return out
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
indice_pairs, indice_pair_num, features, out = ctx.saved_tensors
input_bp = ops.indice_maxpool_backward(
features, out, grad_output, indice_pairs, indice_pair_num
)
return input_bp, None, None, None
indice_conv = SparseConvFunction.apply
indice_inverse_conv = SparseInverseConvFunction.apply
indice_subm_conv = SubMConvFunction.apply
indice_maxpool = SparseMaxPoolFunction.apply