124 lines
3.9 KiB
Python
124 lines
3.9 KiB
Python
|
|
# Copyright 2019 Yan Yan
|
||
|
|
#
|
||
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
|
# you may not use this file except in compliance with the License.
|
||
|
|
# You may obtain a copy of the License at
|
||
|
|
#
|
||
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
#
|
||
|
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
|
# See the License for the specific language governing permissions and
|
||
|
|
# limitations under the License.
|
||
|
|
|
||
|
|
import torch
|
||
|
|
from torch.autograd import Function
|
||
|
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
||
|
|
|
||
|
|
from . import ops as ops
|
||
|
|
|
||
|
|
|
||
|
|
class SparseConvFunction(Function):
|
||
|
|
@staticmethod
|
||
|
|
@custom_fwd(cast_inputs=torch.half)
|
||
|
|
def forward(
|
||
|
|
ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out
|
||
|
|
):
|
||
|
|
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
|
||
|
|
return ops.indice_conv(
|
||
|
|
features, filters, indice_pairs, indice_pair_num, num_activate_out, False
|
||
|
|
)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
@custom_bwd
|
||
|
|
def backward(ctx, grad_output):
|
||
|
|
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
|
||
|
|
input_bp, filters_bp = ops.indice_conv_backward(
|
||
|
|
features, filters, grad_output, indice_pairs, indice_pair_num, False
|
||
|
|
)
|
||
|
|
|
||
|
|
return input_bp, filters_bp, None, None, None
|
||
|
|
|
||
|
|
|
||
|
|
class SparseInverseConvFunction(Function):
|
||
|
|
@staticmethod
|
||
|
|
@custom_fwd(cast_inputs=torch.half)
|
||
|
|
def forward(
|
||
|
|
ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out
|
||
|
|
):
|
||
|
|
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
|
||
|
|
return ops.indice_conv(
|
||
|
|
features,
|
||
|
|
filters,
|
||
|
|
indice_pairs,
|
||
|
|
indice_pair_num,
|
||
|
|
num_activate_out,
|
||
|
|
True,
|
||
|
|
False,
|
||
|
|
)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
@custom_bwd
|
||
|
|
def backward(ctx, grad_output):
|
||
|
|
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
|
||
|
|
input_bp, filters_bp = ops.indice_conv_backward(
|
||
|
|
features, filters, grad_output, indice_pairs, indice_pair_num, True, False
|
||
|
|
)
|
||
|
|
|
||
|
|
return input_bp, filters_bp, None, None, None
|
||
|
|
|
||
|
|
|
||
|
|
class SubMConvFunction(Function):
|
||
|
|
@staticmethod
|
||
|
|
@custom_fwd(cast_inputs=torch.half)
|
||
|
|
def forward(
|
||
|
|
ctx, features, filters, indice_pairs, indice_pair_num, num_activate_out
|
||
|
|
):
|
||
|
|
ctx.save_for_backward(indice_pairs, indice_pair_num, features, filters)
|
||
|
|
return ops.indice_conv(
|
||
|
|
features,
|
||
|
|
filters,
|
||
|
|
indice_pairs,
|
||
|
|
indice_pair_num,
|
||
|
|
num_activate_out,
|
||
|
|
False,
|
||
|
|
True,
|
||
|
|
)
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
@custom_bwd
|
||
|
|
def backward(ctx, grad_output):
|
||
|
|
indice_pairs, indice_pair_num, features, filters = ctx.saved_tensors
|
||
|
|
input_bp, filters_bp = ops.indice_conv_backward(
|
||
|
|
features, filters, grad_output, indice_pairs, indice_pair_num, False, True
|
||
|
|
)
|
||
|
|
|
||
|
|
return input_bp, filters_bp, None, None, None
|
||
|
|
|
||
|
|
|
||
|
|
class SparseMaxPoolFunction(Function):
|
||
|
|
@staticmethod
|
||
|
|
@custom_fwd(cast_inputs=torch.half)
|
||
|
|
def forward(ctx, features, indice_pairs, indice_pair_num, num_activate_out):
|
||
|
|
out = ops.indice_maxpool(
|
||
|
|
features, indice_pairs, indice_pair_num, num_activate_out
|
||
|
|
)
|
||
|
|
ctx.save_for_backward(indice_pairs, indice_pair_num, features, out)
|
||
|
|
return out
|
||
|
|
|
||
|
|
@staticmethod
|
||
|
|
@custom_bwd
|
||
|
|
def backward(ctx, grad_output):
|
||
|
|
indice_pairs, indice_pair_num, features, out = ctx.saved_tensors
|
||
|
|
input_bp = ops.indice_maxpool_backward(
|
||
|
|
features, out, grad_output, indice_pairs, indice_pair_num
|
||
|
|
)
|
||
|
|
return input_bp, None, None, None
|
||
|
|
|
||
|
|
|
||
|
|
indice_conv = SparseConvFunction.apply
|
||
|
|
indice_inverse_conv = SparseInverseConvFunction.apply
|
||
|
|
indice_subm_conv = SubMConvFunction.apply
|
||
|
|
indice_maxpool = SparseMaxPoolFunction.apply
|