bev-project/mmdet3d/ops/group_points/group_points.py

221 lines
7.4 KiB
Python
Raw Normal View History

2022-06-03 12:21:18 +08:00
import torch
from torch import nn as nn
from torch.autograd import Function
from typing import Tuple
from ..ball_query import ball_query
from ..knn import knn
from . import group_points_ext
class QueryAndGroup(nn.Module):
"""Query and Group.
Groups with a ball query of radius
Args:
max_radius (float | None): The maximum radius of the balls.
If None is given, we will use kNN sampling instead of ball query.
sample_num (int): Maximum number of features to gather in the ball.
min_radius (float): The minimum radius of the balls.
use_xyz (bool): Whether to use xyz.
Default: True.
return_grouped_xyz (bool): Whether to return grouped xyz.
Default: False.
normalize_xyz (bool): Whether to normalize xyz.
Default: False.
uniform_sample (bool): Whether to sample uniformly.
Default: False
return_unique_cnt (bool): Whether to return the count of
unique samples.
Default: False.
return_grouped_idx (bool): Whether to return grouped idx.
Default: False.
"""
def __init__(
self,
max_radius,
sample_num,
min_radius=0,
use_xyz=True,
return_grouped_xyz=False,
normalize_xyz=False,
uniform_sample=False,
return_unique_cnt=False,
return_grouped_idx=False,
):
super(QueryAndGroup, self).__init__()
self.max_radius = max_radius
self.min_radius = min_radius
self.sample_num = sample_num
self.use_xyz = use_xyz
self.return_grouped_xyz = return_grouped_xyz
self.normalize_xyz = normalize_xyz
self.uniform_sample = uniform_sample
self.return_unique_cnt = return_unique_cnt
self.return_grouped_idx = return_grouped_idx
if self.return_unique_cnt:
assert self.uniform_sample, (
"uniform_sample should be True when " "returning the count of unique samples"
)
if self.max_radius is None:
assert not self.normalize_xyz, "can not normalize grouped xyz when max_radius is None"
def forward(self, points_xyz, center_xyz, features=None):
"""forward.
Args:
points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
center_xyz (Tensor): (B, npoint, 3) Centriods.
features (Tensor): (B, C, N) Descriptors of the features.
Return
Tensor: (B, 3 + C, npoint, sample_num) Grouped feature.
"""
# if self.max_radius is None, we will perform kNN instead of ball query
# idx is of shape [B, npoint, sample_num]
if self.max_radius is None:
idx = knn(self.sample_num, points_xyz, center_xyz, False)
idx = idx.transpose(1, 2).contiguous()
else:
idx = ball_query(
self.min_radius, self.max_radius, self.sample_num, points_xyz, center_xyz
)
if self.uniform_sample:
unique_cnt = torch.zeros((idx.shape[0], idx.shape[1]))
for i_batch in range(idx.shape[0]):
for i_region in range(idx.shape[1]):
unique_ind = torch.unique(idx[i_batch, i_region, :])
num_unique = unique_ind.shape[0]
unique_cnt[i_batch, i_region] = num_unique
sample_ind = torch.randint(
0, num_unique, (self.sample_num - num_unique,), dtype=torch.long
)
all_ind = torch.cat((unique_ind, unique_ind[sample_ind]))
idx[i_batch, i_region, :] = all_ind
xyz_trans = points_xyz.transpose(1, 2).contiguous()
# (B, 3, npoint, sample_num)
grouped_xyz = grouping_operation(xyz_trans, idx)
grouped_xyz_diff = grouped_xyz - center_xyz.transpose(1, 2).unsqueeze(
-1
) # relative offsets
if self.normalize_xyz:
grouped_xyz_diff /= self.max_radius
if features is not None:
grouped_features = grouping_operation(features, idx)
if self.use_xyz:
# (B, C + 3, npoint, sample_num)
new_features = torch.cat([grouped_xyz_diff, grouped_features], dim=1)
else:
new_features = grouped_features
else:
assert self.use_xyz, "Cannot have not features and not use xyz as a feature!"
new_features = grouped_xyz_diff
ret = [new_features]
if self.return_grouped_xyz:
ret.append(grouped_xyz)
if self.return_unique_cnt:
ret.append(unique_cnt)
if self.return_grouped_idx:
ret.append(idx)
if len(ret) == 1:
return ret[0]
else:
return tuple(ret)
class GroupAll(nn.Module):
"""Group All.
Group xyz with feature.
Args:
use_xyz (bool): Whether to use xyz.
"""
def __init__(self, use_xyz: bool = True):
super().__init__()
self.use_xyz = use_xyz
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None):
"""forward.
Args:
xyz (Tensor): (B, N, 3) xyz coordinates of the features.
new_xyz (Tensor): Ignored.
features (Tensor): (B, C, N) features to group.
Return:
Tensor: (B, C + 3, 1, N) Grouped feature.
"""
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
if features is not None:
grouped_features = features.unsqueeze(2)
if self.use_xyz:
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, 3 + C, 1, N)
else:
new_features = grouped_features
else:
new_features = grouped_xyz
return new_features
class GroupingOperation(Function):
"""Grouping Operation.
Group feature with given index.
"""
@staticmethod
def forward(ctx, features: torch.Tensor, indices: torch.Tensor) -> torch.Tensor:
"""forward.
Args:
features (Tensor): (B, C, N) tensor of features to group.
indices (Tensor): (B, npoint, nsample) the indicies of
features to group with.
Returns:
Tensor: (B, C, npoint, nsample) Grouped features.
"""
assert features.is_contiguous()
assert indices.is_contiguous()
B, nfeatures, nsample = indices.size()
_, C, N = features.size()
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
group_points_ext.forward(B, C, N, nfeatures, nsample, features, indices, output)
ctx.for_backwards = (indices, N)
return output
@staticmethod
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""backward.
Args:
grad_out (Tensor): (B, C, npoint, nsample) tensor of the gradients
of the output from forward.
Returns:
Tensor: (B, C, N) gradient of the features.
"""
idx, N = ctx.for_backwards
B, C, npoint, nsample = grad_out.size()
grad_features = torch.cuda.FloatTensor(B, C, N).zero_()
grad_out_data = grad_out.data.contiguous()
group_points_ext.backward(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
return grad_features, None
grouping_operation = GroupingOperation.apply