2022-06-03 12:21:18 +08:00
|
|
|
|
from mmcv.cnn import ConvModule, build_conv_layer, kaiming_init
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
from torch import nn
|
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
from torch.nn.parameter import Parameter
|
|
|
|
|
|
from torch.nn import Linear
|
|
|
|
|
|
from torch.nn.init import xavier_uniform_, constant_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ["PositionEmbeddingLearned", "TransformerDecoderLayer", "MultiheadAttention", "FFN"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PositionEmbeddingLearned(nn.Module):
|
|
|
|
|
|
"""
|
|
|
|
|
|
Absolute pos embedding, learned.
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, input_channel, num_pos_feats=288):
|
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
self.position_embedding_head = nn.Sequential(
|
|
|
|
|
|
nn.Conv1d(input_channel, num_pos_feats, kernel_size=1),
|
|
|
|
|
|
nn.BatchNorm1d(num_pos_feats),
|
|
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
|
|
nn.Conv1d(num_pos_feats, num_pos_feats, kernel_size=1))
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, xyz):
|
|
|
|
|
|
xyz = xyz.transpose(1, 2).contiguous()
|
2025-11-14 17:06:09 +08:00
|
|
|
|
orig_dtype = xyz.dtype
|
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
|
|
|
|
position_embedding = self.position_embedding_head(xyz.float())
|
|
|
|
|
|
if orig_dtype == torch.float16:
|
|
|
|
|
|
position_embedding = position_embedding.half()
|
2022-06-03 12:21:18 +08:00
|
|
|
|
return position_embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerDecoderLayer(nn.Module):
|
|
|
|
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
|
|
|
|
|
|
self_posembed=None, cross_posembed=None, cross_only=False):
|
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
self.cross_only = cross_only
|
|
|
|
|
|
if not self.cross_only:
|
|
|
|
|
|
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
|
|
|
|
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
|
|
|
|
# Implementation of Feedforward model
|
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
|
|
|
|
|
|
|
|
|
|
self.norm1 = nn.LayerNorm(d_model)
|
|
|
|
|
|
self.norm2 = nn.LayerNorm(d_model)
|
|
|
|
|
|
self.norm3 = nn.LayerNorm(d_model)
|
|
|
|
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
|
|
|
|
self.dropout2 = nn.Dropout(dropout)
|
|
|
|
|
|
self.dropout3 = nn.Dropout(dropout)
|
|
|
|
|
|
|
|
|
|
|
|
def _get_activation_fn(activation):
|
|
|
|
|
|
"""Return an activation function given a string"""
|
|
|
|
|
|
if activation == "relu":
|
|
|
|
|
|
return F.relu
|
|
|
|
|
|
if activation == "gelu":
|
|
|
|
|
|
return F.gelu
|
|
|
|
|
|
if activation == "glu":
|
|
|
|
|
|
return F.glu
|
|
|
|
|
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
|
|
|
|
|
|
|
|
|
|
|
self.activation = _get_activation_fn(activation)
|
|
|
|
|
|
|
|
|
|
|
|
self.self_posembed = self_posembed
|
|
|
|
|
|
self.cross_posembed = cross_posembed
|
|
|
|
|
|
|
|
|
|
|
|
def with_pos_embed(self, tensor, pos_embed):
|
|
|
|
|
|
return tensor if pos_embed is None else tensor + pos_embed
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, query, key, query_pos, key_pos, attn_mask=None):
|
|
|
|
|
|
"""
|
|
|
|
|
|
:param query: B C Pq
|
|
|
|
|
|
:param key: B C Pk
|
|
|
|
|
|
:param query_pos: B Pq 3/6
|
|
|
|
|
|
:param key_pos: B Pk 3/6
|
|
|
|
|
|
:param value_pos: [B Pq 3/6]
|
|
|
|
|
|
:return:
|
|
|
|
|
|
"""
|
2025-11-14 17:06:09 +08:00
|
|
|
|
orig_dtype = query.dtype
|
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
|
|
|
|
query = query.to(torch.float32)
|
|
|
|
|
|
key = key.to(torch.float32)
|
|
|
|
|
|
if query_pos is not None:
|
|
|
|
|
|
query_pos = query_pos.to(torch.float32)
|
|
|
|
|
|
if key_pos is not None:
|
|
|
|
|
|
key_pos = key_pos.to(torch.float32)
|
|
|
|
|
|
if attn_mask is not None:
|
|
|
|
|
|
attn_mask = attn_mask.to(torch.float32)
|
|
|
|
|
|
|
2022-06-03 12:21:18 +08:00
|
|
|
|
# NxCxP to PxNxC
|
|
|
|
|
|
if self.self_posembed is not None:
|
|
|
|
|
|
query_pos_embed = self.self_posembed(query_pos).permute(2, 0, 1)
|
|
|
|
|
|
else:
|
|
|
|
|
|
query_pos_embed = None
|
|
|
|
|
|
if self.cross_posembed is not None:
|
|
|
|
|
|
key_pos_embed = self.cross_posembed(key_pos).permute(2, 0, 1)
|
|
|
|
|
|
else:
|
|
|
|
|
|
key_pos_embed = None
|
|
|
|
|
|
|
|
|
|
|
|
query = query.permute(2, 0, 1)
|
|
|
|
|
|
key = key.permute(2, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
if not self.cross_only:
|
|
|
|
|
|
q = k = v = self.with_pos_embed(query, query_pos_embed)
|
|
|
|
|
|
query2 = self.self_attn(q, k, value=v)[0]
|
|
|
|
|
|
query = query + self.dropout1(query2)
|
|
|
|
|
|
query = self.norm1(query)
|
|
|
|
|
|
|
|
|
|
|
|
query2 = self.multihead_attn(query=self.with_pos_embed(query, query_pos_embed),
|
|
|
|
|
|
key=self.with_pos_embed(key, key_pos_embed),
|
|
|
|
|
|
value=self.with_pos_embed(key, key_pos_embed), attn_mask=attn_mask)[0]
|
|
|
|
|
|
query = query + self.dropout2(query2)
|
|
|
|
|
|
query = self.norm2(query)
|
|
|
|
|
|
|
|
|
|
|
|
query2 = self.linear2(self.dropout(self.activation(self.linear1(query))))
|
|
|
|
|
|
query = query + self.dropout3(query2)
|
|
|
|
|
|
query = self.norm3(query)
|
|
|
|
|
|
|
|
|
|
|
|
# NxCxP to PxNxC
|
2025-11-14 17:06:09 +08:00
|
|
|
|
query = query.permute(1, 2, 0).to(orig_dtype)
|
2022-06-03 12:21:18 +08:00
|
|
|
|
return query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiheadAttention(nn.Module):
|
|
|
|
|
|
r"""Allows the model to jointly attend to information
|
|
|
|
|
|
from different representation subspaces.
|
|
|
|
|
|
See reference: Attention Is All You Need
|
|
|
|
|
|
.. math::
|
|
|
|
|
|
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
|
|
|
|
|
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
|
|
|
|
|
Args:
|
|
|
|
|
|
embed_dim: total dimension of the model.
|
|
|
|
|
|
num_heads: parallel attention heads.
|
|
|
|
|
|
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
|
|
|
|
|
|
bias: add bias as module parameter. Default: True.
|
|
|
|
|
|
add_bias_kv: add bias to the key and value sequences at dim=0.
|
|
|
|
|
|
add_zero_attn: add a new batch of zeros to the key and
|
|
|
|
|
|
value sequences at dim=1.
|
|
|
|
|
|
kdim: total number of features in key. Default: None.
|
|
|
|
|
|
vdim: total number of features in key. Default: None.
|
|
|
|
|
|
Note: if kdim and vdim are None, they will be set to embed_dim such that
|
|
|
|
|
|
query, key, and value have the same number of features.
|
|
|
|
|
|
Examples::
|
|
|
|
|
|
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
|
|
|
|
|
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None,
|
|
|
|
|
|
vdim=None):
|
|
|
|
|
|
super(MultiheadAttention, self).__init__()
|
|
|
|
|
|
self.embed_dim = embed_dim
|
|
|
|
|
|
self.kdim = kdim if kdim is not None else embed_dim
|
|
|
|
|
|
self.vdim = vdim if vdim is not None else embed_dim
|
|
|
|
|
|
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
|
|
|
|
|
|
|
|
|
|
|
self.num_heads = num_heads
|
|
|
|
|
|
self.dropout = dropout
|
|
|
|
|
|
self.head_dim = embed_dim // num_heads
|
|
|
|
|
|
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
|
|
|
|
|
|
|
|
|
|
|
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
|
|
|
|
|
|
|
|
|
|
|
|
if self._qkv_same_embed_dim is False:
|
|
|
|
|
|
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
|
|
|
|
|
|
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
|
|
|
|
|
|
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
|
|
|
|
|
|
|
|
|
|
|
|
if bias:
|
|
|
|
|
|
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
|
|
|
|
|
|
else:
|
|
|
|
|
|
self.register_parameter('in_proj_bias', None)
|
|
|
|
|
|
self.out_proj = Linear(embed_dim, embed_dim, bias=bias)
|
|
|
|
|
|
|
|
|
|
|
|
if add_bias_kv:
|
|
|
|
|
|
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
|
|
|
|
|
|
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
|
|
|
|
|
|
else:
|
|
|
|
|
|
self.bias_k = self.bias_v = None
|
|
|
|
|
|
|
|
|
|
|
|
self.add_zero_attn = add_zero_attn
|
|
|
|
|
|
|
|
|
|
|
|
self._reset_parameters()
|
|
|
|
|
|
|
|
|
|
|
|
def _reset_parameters(self):
|
|
|
|
|
|
if self._qkv_same_embed_dim:
|
|
|
|
|
|
xavier_uniform_(self.in_proj_weight)
|
|
|
|
|
|
else:
|
|
|
|
|
|
xavier_uniform_(self.q_proj_weight)
|
|
|
|
|
|
xavier_uniform_(self.k_proj_weight)
|
|
|
|
|
|
xavier_uniform_(self.v_proj_weight)
|
|
|
|
|
|
|
|
|
|
|
|
if self.in_proj_bias is not None:
|
|
|
|
|
|
constant_(self.in_proj_bias, 0.)
|
|
|
|
|
|
constant_(self.out_proj.bias, 0.)
|
|
|
|
|
|
if self.bias_k is not None:
|
|
|
|
|
|
xavier_normal_(self.bias_k)
|
|
|
|
|
|
if self.bias_v is not None:
|
|
|
|
|
|
xavier_normal_(self.bias_v)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None):
|
|
|
|
|
|
r"""
|
|
|
|
|
|
Args:
|
|
|
|
|
|
query, key, value: map a query and a set of key-value pairs to an output.
|
|
|
|
|
|
See "Attention Is All You Need" for more details.
|
|
|
|
|
|
key_padding_mask: if provided, specified padding elements in the key will
|
|
|
|
|
|
be ignored by the attention. This is an binary mask. When the value is True,
|
|
|
|
|
|
the corresponding value on the attention layer will be filled with -inf.
|
|
|
|
|
|
need_weights: output attn_output_weights.
|
|
|
|
|
|
attn_mask: mask that prevents attention to certain positions. This is an additive mask
|
|
|
|
|
|
(i.e. the values will be added to the attention layer).
|
|
|
|
|
|
Shape:
|
|
|
|
|
|
- Inputs:
|
|
|
|
|
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
|
|
|
|
the embedding dimension.
|
|
|
|
|
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
|
|
|
|
the embedding dimension.
|
|
|
|
|
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
|
|
|
|
the embedding dimension.
|
|
|
|
|
|
- key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length.
|
|
|
|
|
|
- attn_mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
|
|
|
|
- Outputs:
|
|
|
|
|
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
|
|
|
|
E is the embedding dimension.
|
|
|
|
|
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
|
|
|
|
L is the target sequence length, S is the source sequence length.
|
|
|
|
|
|
"""
|
|
|
|
|
|
if hasattr(self, '_qkv_same_embed_dim') and self._qkv_same_embed_dim is False:
|
|
|
|
|
|
return multi_head_attention_forward(
|
|
|
|
|
|
query, key, value, self.embed_dim, self.num_heads,
|
|
|
|
|
|
self.in_proj_weight, self.in_proj_bias,
|
|
|
|
|
|
self.bias_k, self.bias_v, self.add_zero_attn,
|
|
|
|
|
|
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
|
|
|
|
|
training=self.training,
|
|
|
|
|
|
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
|
|
|
|
|
attn_mask=attn_mask, use_separate_proj_weight=True,
|
|
|
|
|
|
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
|
|
|
|
|
v_proj_weight=self.v_proj_weight)
|
|
|
|
|
|
else:
|
|
|
|
|
|
if not hasattr(self, '_qkv_same_embed_dim'):
|
|
|
|
|
|
warnings.warn('A new version of MultiheadAttention module has been implemented. \
|
|
|
|
|
|
Please re-train your model with the new module',
|
|
|
|
|
|
UserWarning)
|
|
|
|
|
|
|
|
|
|
|
|
return multi_head_attention_forward(
|
|
|
|
|
|
query, key, value, self.embed_dim, self.num_heads,
|
|
|
|
|
|
self.in_proj_weight, self.in_proj_bias,
|
|
|
|
|
|
self.bias_k, self.bias_v, self.add_zero_attn,
|
|
|
|
|
|
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
|
|
|
|
|
training=self.training,
|
|
|
|
|
|
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
|
|
|
|
|
attn_mask=attn_mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def multi_head_attention_forward(query, # type: Tensor
|
|
|
|
|
|
key, # type: Tensor
|
|
|
|
|
|
value, # type: Tensor
|
|
|
|
|
|
embed_dim_to_check, # type: int
|
|
|
|
|
|
num_heads, # type: int
|
|
|
|
|
|
in_proj_weight, # type: Tensor
|
|
|
|
|
|
in_proj_bias, # type: Tensor
|
|
|
|
|
|
bias_k, # type: Optional[Tensor]
|
|
|
|
|
|
bias_v, # type: Optional[Tensor]
|
|
|
|
|
|
add_zero_attn, # type: bool
|
|
|
|
|
|
dropout_p, # type: float
|
|
|
|
|
|
out_proj_weight, # type: Tensor
|
|
|
|
|
|
out_proj_bias, # type: Tensor
|
|
|
|
|
|
training=True, # type: bool
|
|
|
|
|
|
key_padding_mask=None, # type: Optional[Tensor]
|
|
|
|
|
|
need_weights=True, # type: bool
|
|
|
|
|
|
attn_mask=None, # type: Optional[Tensor]
|
|
|
|
|
|
use_separate_proj_weight=False, # type: bool
|
|
|
|
|
|
q_proj_weight=None, # type: Optional[Tensor]
|
|
|
|
|
|
k_proj_weight=None, # type: Optional[Tensor]
|
|
|
|
|
|
v_proj_weight=None, # type: Optional[Tensor]
|
|
|
|
|
|
static_k=None, # type: Optional[Tensor]
|
|
|
|
|
|
static_v=None, # type: Optional[Tensor]
|
|
|
|
|
|
):
|
|
|
|
|
|
# type: (...) -> Tuple[Tensor, Optional[Tensor]]
|
|
|
|
|
|
r"""
|
|
|
|
|
|
Args:
|
|
|
|
|
|
query, key, value: map a query and a set of key-value pairs to an output.
|
|
|
|
|
|
See "Attention Is All You Need" for more details.
|
|
|
|
|
|
embed_dim_to_check: total dimension of the model.
|
|
|
|
|
|
num_heads: parallel attention heads.
|
|
|
|
|
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
|
|
|
|
|
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
|
|
|
|
|
add_zero_attn: add a new batch of zeros to the key and
|
|
|
|
|
|
value sequences at dim=1.
|
|
|
|
|
|
dropout_p: probability of an element to be zeroed.
|
|
|
|
|
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
|
|
|
|
|
training: apply dropout if is ``True``.
|
|
|
|
|
|
key_padding_mask: if provided, specified padding elements in the key will
|
|
|
|
|
|
be ignored by the attention. This is an binary mask. When the value is True,
|
|
|
|
|
|
the corresponding value on the attention layer will be filled with -inf.
|
|
|
|
|
|
need_weights: output attn_output_weights.
|
|
|
|
|
|
attn_mask: mask that prevents attention to certain positions. This is an additive mask
|
|
|
|
|
|
(i.e. the values will be added to the attention layer).
|
|
|
|
|
|
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
|
|
|
|
|
and value in differnt forms. If false, in_proj_weight will be used, which is
|
|
|
|
|
|
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
|
|
|
|
|
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
|
|
|
|
|
static_k, static_v: static key and value used for attention operators.
|
|
|
|
|
|
Shape:
|
|
|
|
|
|
Inputs:
|
|
|
|
|
|
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
|
|
|
|
|
the embedding dimension.
|
|
|
|
|
|
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
|
|
|
|
|
the embedding dimension.
|
|
|
|
|
|
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
|
|
|
|
|
the embedding dimension.
|
|
|
|
|
|
- key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length.
|
|
|
|
|
|
- attn_mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
|
|
|
|
|
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
|
|
|
|
|
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
|
|
|
|
|
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
|
|
|
|
|
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
|
|
|
|
|
Outputs:
|
|
|
|
|
|
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
|
|
|
|
|
E is the embedding dimension.
|
|
|
|
|
|
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
|
|
|
|
|
|
L is the target sequence length, S is the source sequence length.
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
qkv_same = torch.equal(query, key) and torch.equal(key, value)
|
|
|
|
|
|
kv_same = torch.equal(key, value)
|
|
|
|
|
|
|
|
|
|
|
|
tgt_len, bsz, embed_dim = query.size()
|
|
|
|
|
|
assert embed_dim == embed_dim_to_check
|
|
|
|
|
|
assert list(query.size()) == [tgt_len, bsz, embed_dim]
|
|
|
|
|
|
assert key.size() == value.size()
|
|
|
|
|
|
|
|
|
|
|
|
head_dim = embed_dim // num_heads
|
|
|
|
|
|
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
|
|
|
|
|
|
scaling = float(head_dim) ** -0.5
|
|
|
|
|
|
|
|
|
|
|
|
if use_separate_proj_weight is not True:
|
|
|
|
|
|
if qkv_same:
|
|
|
|
|
|
# self-attention
|
|
|
|
|
|
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
elif kv_same:
|
|
|
|
|
|
# encoder-decoder attention
|
|
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
|
|
|
|
_b = in_proj_bias
|
|
|
|
|
|
_start = 0
|
|
|
|
|
|
_end = embed_dim
|
|
|
|
|
|
_w = in_proj_weight[_start:_end, :]
|
|
|
|
|
|
if _b is not None:
|
|
|
|
|
|
_b = _b[_start:_end]
|
|
|
|
|
|
q = F.linear(query, _w, _b)
|
|
|
|
|
|
|
|
|
|
|
|
if key is None:
|
|
|
|
|
|
assert value is None
|
|
|
|
|
|
k = None
|
|
|
|
|
|
v = None
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
|
|
|
|
_b = in_proj_bias
|
|
|
|
|
|
_start = embed_dim
|
|
|
|
|
|
_end = None
|
|
|
|
|
|
_w = in_proj_weight[_start:, :]
|
|
|
|
|
|
if _b is not None:
|
|
|
|
|
|
_b = _b[_start:]
|
|
|
|
|
|
k, v = F.linear(key, _w, _b).chunk(2, dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
|
|
|
|
_b = in_proj_bias
|
|
|
|
|
|
_start = 0
|
|
|
|
|
|
_end = embed_dim
|
|
|
|
|
|
_w = in_proj_weight[_start:_end, :]
|
|
|
|
|
|
if _b is not None:
|
|
|
|
|
|
_b = _b[_start:_end]
|
|
|
|
|
|
q = F.linear(query, _w, _b)
|
|
|
|
|
|
|
|
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
|
|
|
|
_b = in_proj_bias
|
|
|
|
|
|
_start = embed_dim
|
|
|
|
|
|
_end = embed_dim * 2
|
|
|
|
|
|
_w = in_proj_weight[_start:_end, :]
|
|
|
|
|
|
if _b is not None:
|
|
|
|
|
|
_b = _b[_start:_end]
|
|
|
|
|
|
k = F.linear(key, _w, _b)
|
|
|
|
|
|
|
|
|
|
|
|
# This is inline in_proj function with in_proj_weight and in_proj_bias
|
|
|
|
|
|
_b = in_proj_bias
|
|
|
|
|
|
_start = embed_dim * 2
|
|
|
|
|
|
_end = None
|
|
|
|
|
|
_w = in_proj_weight[_start:, :]
|
|
|
|
|
|
if _b is not None:
|
|
|
|
|
|
_b = _b[_start:]
|
|
|
|
|
|
v = F.linear(value, _w, _b)
|
|
|
|
|
|
else:
|
|
|
|
|
|
q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight)
|
|
|
|
|
|
len1, len2 = q_proj_weight_non_opt.size()
|
|
|
|
|
|
assert len1 == embed_dim and len2 == query.size(-1)
|
|
|
|
|
|
|
|
|
|
|
|
k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight)
|
|
|
|
|
|
len1, len2 = k_proj_weight_non_opt.size()
|
|
|
|
|
|
assert len1 == embed_dim and len2 == key.size(-1)
|
|
|
|
|
|
|
|
|
|
|
|
v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight)
|
|
|
|
|
|
len1, len2 = v_proj_weight_non_opt.size()
|
|
|
|
|
|
assert len1 == embed_dim and len2 == value.size(-1)
|
|
|
|
|
|
|
|
|
|
|
|
if in_proj_bias is not None:
|
|
|
|
|
|
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
|
|
|
|
|
|
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
|
|
|
|
|
|
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
|
|
|
|
|
|
else:
|
|
|
|
|
|
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
|
|
|
|
|
|
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
|
|
|
|
|
|
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
|
|
|
|
|
|
q = q * scaling
|
|
|
|
|
|
|
|
|
|
|
|
if bias_k is not None and bias_v is not None:
|
|
|
|
|
|
if static_k is None and static_v is None:
|
|
|
|
|
|
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
|
|
|
|
|
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
|
|
|
|
|
if attn_mask is not None:
|
|
|
|
|
|
attn_mask = torch.cat([attn_mask,
|
|
|
|
|
|
torch.zeros((attn_mask.size(0), 1),
|
|
|
|
|
|
dtype=attn_mask.dtype,
|
|
|
|
|
|
device=attn_mask.device)], dim=1)
|
|
|
|
|
|
if key_padding_mask is not None:
|
|
|
|
|
|
key_padding_mask = torch.cat(
|
|
|
|
|
|
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
|
|
|
|
|
|
dtype=key_padding_mask.dtype,
|
|
|
|
|
|
device=key_padding_mask.device)], dim=1)
|
|
|
|
|
|
else:
|
|
|
|
|
|
assert static_k is None, "bias cannot be added to static key."
|
|
|
|
|
|
assert static_v is None, "bias cannot be added to static value."
|
|
|
|
|
|
else:
|
|
|
|
|
|
assert bias_k is None
|
|
|
|
|
|
assert bias_v is None
|
|
|
|
|
|
|
|
|
|
|
|
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
|
|
|
|
|
if k is not None:
|
|
|
|
|
|
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
|
|
|
|
|
if v is not None:
|
|
|
|
|
|
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
if static_k is not None:
|
|
|
|
|
|
assert static_k.size(0) == bsz * num_heads
|
|
|
|
|
|
assert static_k.size(2) == head_dim
|
|
|
|
|
|
k = static_k
|
|
|
|
|
|
|
|
|
|
|
|
if static_v is not None:
|
|
|
|
|
|
assert static_v.size(0) == bsz * num_heads
|
|
|
|
|
|
assert static_v.size(2) == head_dim
|
|
|
|
|
|
v = static_v
|
|
|
|
|
|
|
|
|
|
|
|
src_len = k.size(1)
|
|
|
|
|
|
|
|
|
|
|
|
if key_padding_mask is not None:
|
|
|
|
|
|
assert key_padding_mask.size(0) == bsz
|
|
|
|
|
|
assert key_padding_mask.size(1) == src_len
|
|
|
|
|
|
|
|
|
|
|
|
if add_zero_attn:
|
|
|
|
|
|
src_len += 1
|
|
|
|
|
|
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
|
|
|
|
|
|
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
|
|
|
|
|
|
if attn_mask is not None:
|
|
|
|
|
|
attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1),
|
|
|
|
|
|
dtype=attn_mask.dtype,
|
|
|
|
|
|
device=attn_mask.device)], dim=1)
|
|
|
|
|
|
if key_padding_mask is not None:
|
|
|
|
|
|
key_padding_mask = torch.cat(
|
|
|
|
|
|
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
|
|
|
|
|
|
dtype=key_padding_mask.dtype,
|
|
|
|
|
|
device=key_padding_mask.device)], dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
|
|
|
|
|
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
|
|
|
|
|
|
|
|
|
|
|
|
if attn_mask is not None:
|
|
|
|
|
|
attn_mask = attn_mask.unsqueeze(0)
|
|
|
|
|
|
attn_output_weights += attn_mask
|
|
|
|
|
|
|
|
|
|
|
|
if key_padding_mask is not None:
|
|
|
|
|
|
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
|
|
|
|
|
attn_output_weights = attn_output_weights.masked_fill(
|
|
|
|
|
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
|
|
|
|
|
float('-inf'),
|
|
|
|
|
|
)
|
|
|
|
|
|
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
|
|
|
|
|
|
|
|
|
|
|
|
attn_output_weights = F.softmax(
|
|
|
|
|
|
attn_output_weights, dim=-1)
|
|
|
|
|
|
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = torch.bmm(attn_output_weights, v)
|
|
|
|
|
|
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
|
|
|
|
|
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
|
|
|
|
|
|
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)
|
|
|
|
|
|
|
|
|
|
|
|
if need_weights:
|
|
|
|
|
|
# average attention weights over heads
|
|
|
|
|
|
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
|
|
|
|
|
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
|
|
|
|
|
else:
|
|
|
|
|
|
return attn_output, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FFN(nn.Module):
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
|
in_channels,
|
|
|
|
|
|
heads,
|
|
|
|
|
|
head_conv=64,
|
|
|
|
|
|
final_kernel=1,
|
|
|
|
|
|
init_bias=-2.19,
|
|
|
|
|
|
conv_cfg=dict(type='Conv1d'),
|
|
|
|
|
|
norm_cfg=dict(type='BN1d'),
|
|
|
|
|
|
bias='auto',
|
|
|
|
|
|
**kwargs):
|
|
|
|
|
|
super(FFN, self).__init__()
|
|
|
|
|
|
|
|
|
|
|
|
self.heads = heads
|
|
|
|
|
|
self.init_bias = init_bias
|
|
|
|
|
|
for head in self.heads:
|
|
|
|
|
|
classes, num_conv = self.heads[head]
|
|
|
|
|
|
|
|
|
|
|
|
conv_layers = []
|
|
|
|
|
|
c_in = in_channels
|
|
|
|
|
|
for i in range(num_conv - 1):
|
|
|
|
|
|
conv_layers.append(
|
|
|
|
|
|
ConvModule(
|
|
|
|
|
|
c_in,
|
|
|
|
|
|
head_conv,
|
|
|
|
|
|
kernel_size=final_kernel,
|
|
|
|
|
|
stride=1,
|
|
|
|
|
|
padding=final_kernel // 2,
|
|
|
|
|
|
bias=bias,
|
|
|
|
|
|
conv_cfg=conv_cfg,
|
|
|
|
|
|
norm_cfg=norm_cfg))
|
|
|
|
|
|
c_in = head_conv
|
|
|
|
|
|
|
|
|
|
|
|
conv_layers.append(
|
|
|
|
|
|
build_conv_layer(
|
|
|
|
|
|
conv_cfg,
|
|
|
|
|
|
head_conv,
|
|
|
|
|
|
classes,
|
|
|
|
|
|
kernel_size=final_kernel,
|
|
|
|
|
|
stride=1,
|
|
|
|
|
|
padding=final_kernel // 2,
|
|
|
|
|
|
bias=True))
|
|
|
|
|
|
conv_layers = nn.Sequential(*conv_layers)
|
|
|
|
|
|
|
|
|
|
|
|
self.__setattr__(head, conv_layers)
|
|
|
|
|
|
|
|
|
|
|
|
def init_weights(self):
|
|
|
|
|
|
"""Initialize weights."""
|
|
|
|
|
|
for head in self.heads:
|
|
|
|
|
|
if head == 'heatmap':
|
|
|
|
|
|
self.__getattr__(head)[-1].bias.data.fill_(self.init_bias)
|
|
|
|
|
|
else:
|
|
|
|
|
|
for m in self.__getattr__(head).modules():
|
|
|
|
|
|
if isinstance(m, nn.Conv2d):
|
|
|
|
|
|
kaiming_init(m)
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
|
"""Forward function for SepHead.
|
|
|
|
|
|
Args:
|
|
|
|
|
|
x (torch.Tensor): Input feature map with the shape of
|
|
|
|
|
|
[B, 512, 128, 128].
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
dict[str: torch.Tensor]: contains the following keys:
|
|
|
|
|
|
-reg (torch.Tensor): 2D regression value with the \
|
|
|
|
|
|
shape of [B, 2, H, W].
|
|
|
|
|
|
-height (torch.Tensor): Height value with the \
|
|
|
|
|
|
shape of [B, 1, H, W].
|
|
|
|
|
|
-dim (torch.Tensor): Size value with the shape \
|
|
|
|
|
|
of [B, 3, H, W].
|
|
|
|
|
|
-rot (torch.Tensor): Rotation value with the \
|
|
|
|
|
|
shape of [B, 1, H, W].
|
|
|
|
|
|
-vel (torch.Tensor): Velocity value with the \
|
|
|
|
|
|
shape of [B, 2, H, W].
|
|
|
|
|
|
-heatmap (torch.Tensor): Heatmap with the shape of \
|
|
|
|
|
|
[B, N, H, W].
|
|
|
|
|
|
"""
|
|
|
|
|
|
ret_dict = dict()
|
|
|
|
|
|
for head in self.heads:
|
|
|
|
|
|
ret_dict[head] = self.__getattr__(head)(x)
|
|
|
|
|
|
|
|
|
|
|
|
return ret_dict
|