bev-project/mmdet3d/models/utils/flops_counter.py

127 lines
3.1 KiB
Python
Raw Normal View History

2022-06-07 21:49:27 +08:00
import torch
import torch.nn as nn
from mmdet.models.backbones.swin import WindowMSA, ShiftWindowMSA
from mmdet3d.ops.spconv import SparseConv3d, SubMConv3d
from mmdet3d.models.utils.transformer import MultiheadAttention
from typing import Union
from thop import profile
__all__ = ["flops_counter"]
# TODO: no need to consider ShiftWindowMSA since it contains WindowMSA
def count_window_msa(m: Union[WindowMSA, ShiftWindowMSA], x, y):
if isinstance(m, WindowMSA):
embed_dims = m.embed_dims
num_heads = m.num_heads
else:
embed_dims = m.w_msa.embed_dims
num_heads = m.w_msa.num_heads
B, N, C = x[0].shape
# qkv = model.qkv(x)
m.total_ops += B * N * embed_dims * 3 * embed_dims
# attn = (q @ k.transpose(-2, -1))
m.total_ops += B * num_heads * N * (embed_dims // num_heads) * N
# x = (attn @ v)
m.total_ops += num_heads * B * N * N * (embed_dims // num_heads)
# x = m.proj(x)
m.total_ops += B * N * embed_dims * embed_dims
def count_sparseconv(m: Union[SparseConv3d, SubMConv3d], x, y):
indice_dict = y.indice_dict[m.indice_key]
kmap_size = indice_dict[-2].sum().item()
m.total_ops += kmap_size * x[0].features.shape[1] * y.features.shape[1]
def count_mha(m: Union[MultiheadAttention, nn.MultiheadAttention], x, y):
flops = 0
if len(x) == 3:
q, k, v = x
elif len(x) == 2:
q, k = x
v = k
elif len(x) == 1:
q = x[0]
k = v = q
else:
return
batch_first = m.batch_first \
if hasattr(m, 'batch_first') else False
if batch_first:
batch_size = q.shape[0]
len_idx = 1
else:
batch_size = q.shape[1]
len_idx = 0
dim_idx = 2
qdim = q.shape[dim_idx]
kdim = k.shape[dim_idx]
vdim = v.shape[dim_idx]
qlen = q.shape[len_idx]
klen = k.shape[len_idx]
vlen = v.shape[len_idx]
num_heads = m.num_heads
assert qdim == m.embed_dim
if m.kdim is None:
assert kdim == qdim
if m.vdim is None:
assert vdim == qdim
flops = 0
# Q scaling
flops += qlen * qdim
# Initial projections
flops += (
(qlen * qdim * qdim) # QW
+ (klen * kdim * kdim) # KW
+ (vlen * vdim * vdim) # VW
)
if m.in_proj_bias is not None:
flops += (qlen + klen + vlen) * qdim
# attention heads: scale, matmul, softmax, matmul
qk_head_dim = qdim // num_heads
v_head_dim = vdim // num_heads
head_flops = (
(qlen * klen * qk_head_dim) # QK^T
+ (qlen * klen) # softmax
+ (qlen * klen * v_head_dim) # AV
)
flops += num_heads * head_flops
# final projection, bias is always enabled
flops += qlen * vdim * (vdim + 1)
flops *= batch_size
m.total_ops += flops
def flops_counter(model, inputs):
macs, params = profile(
model,
inputs,
custom_ops={
WindowMSA: count_window_msa,
#ShiftWindowMSA: count_window_msa,
SparseConv3d: count_sparseconv,
SubMConv3d: count_sparseconv,
MultiheadAttention: count_mha
},
verbose=False
)
return macs, params