bev-project/mmdet3d/models/backbones/second.py

98 lines
3.1 KiB
Python
Raw Normal View History

2022-06-03 12:21:18 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import BaseModule
from torch import nn as nn
from mmdet.models import BACKBONES
__all__ = ["SECOND"]
@BACKBONES.register_module()
class SECOND(BaseModule):
"""Backbone network for SECOND/PointPillars/PartA2/MVXNet.
Args:
in_channels (int): Input channels.
out_channels (list[int]): Output channels for multi-scale feature maps.
layer_nums (list[int]): Number of layers in each stage.
layer_strides (list[int]): Strides of each stage.
norm_cfg (dict): Config dict of normalization layers.
conv_cfg (dict): Config dict of convolutional layers.
"""
def __init__(
self,
in_channels=128,
out_channels=[128, 128, 256],
layer_nums=[3, 5, 5],
layer_strides=[2, 2, 2],
norm_cfg=dict(type="BN", eps=1e-3, momentum=0.01),
conv_cfg=dict(type="Conv2d", bias=False),
init_cfg=None,
pretrained=None,
):
super().__init__(init_cfg=init_cfg)
assert len(layer_strides) == len(layer_nums)
assert len(out_channels) == len(layer_nums)
in_filters = [in_channels, *out_channels[:-1]]
# note that when stride > 1, conv2d with same padding isn't
# equal to pad-conv2d. we should use pad-conv2d.
blocks = []
for i, layer_num in enumerate(layer_nums):
block = [
build_conv_layer(
conv_cfg,
in_filters[i],
out_channels[i],
3,
stride=layer_strides[i],
padding=1,
),
build_norm_layer(norm_cfg, out_channels[i])[1],
nn.ReLU(inplace=True),
]
for j in range(layer_num):
block.append(
build_conv_layer(
conv_cfg, out_channels[i], out_channels[i], 3, padding=1
)
)
block.append(build_norm_layer(norm_cfg, out_channels[i])[1])
block.append(nn.ReLU(inplace=True))
block = nn.Sequential(*block)
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
assert not (
init_cfg and pretrained
), "init_cfg and pretrained cannot be setting at the same time"
if isinstance(pretrained, str):
warnings.warn(
"DeprecationWarning: pretrained is a deprecated, "
'please use "init_cfg" instead'
)
self.init_cfg = dict(type="Pretrained", checkpoint=pretrained)
else:
self.init_cfg = dict(type="Kaiming", layer="Conv2d")
def forward(self, x):
"""Forward function.
Args:
x (torch.Tensor): Input with shape (N, C, H, W).
Returns:
tuple[torch.Tensor]: Multi-scale features.
"""
outs = []
for i in range(len(self.blocks)):
x = self.blocks[i](x)
outs.append(x)
return tuple(outs)