bev-project/EVAL_FROM_PKL.py

99 lines
3.0 KiB
Python
Raw Normal View History

2025-11-21 10:50:51 +08:00
#!/usr/bin/env python
"""
从已有的pkl结果文件进行评估跳过推理步骤
"""
import os
import pickle
import sys
import torch
# 设置环境
os.environ['PATH'] = '/opt/conda/bin:' + os.environ.get('PATH', '')
os.environ['LD_LIBRARY_PATH'] = '/opt/conda/lib/python3.8/site-packages/torch/lib:/opt/conda/lib:/usr/local/cuda/lib64:' + os.environ.get('LD_LIBRARY_PATH', '')
os.environ['PYTHONPATH'] = '/workspace/bevfusion:' + os.environ.get('PYTHONPATH', '')
def main():
import mmcv
from mmcv import Config
from mmdet3d.datasets import NuScenesDataset
# 加载配置
config_file = 'configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask_BEV2X_phase4b_rmtppad_segmentation.yaml'
cfg = Config.fromfile(config_file)
# 设置为测试模式
cfg.data.val.test_mode = True
# 创建数据集
print("正在创建数据集...")
from mmdet3d.datasets import build_dataset
# 构建完整的val配置 (参考nuscenes/default.yaml)
val_config = {
'type': 'NuScenesDataset',
'dataset_root': cfg.dataset_root,
'ann_file': cfg.dataset_root + 'nuscenes_infos_val.pkl',
'pipeline': cfg.evaluation.pipeline,
'object_classes': cfg.object_classes,
'map_classes': cfg.map_classes,
'modality': {
'use_lidar': True,
'use_camera': True,
'use_radar': False,
'use_map': False,
'use_external': False
},
'test_mode': True,
'use_valid_flag': False,
'box_type_3d': 'LiDAR',
'load_interval': cfg.data.val.load_interval if hasattr(cfg.data.val, 'load_interval') else 1
}
dataset = build_dataset(val_config)
print(f"数据集大小: {len(dataset)}")
# 加载已有的结果
results_file = '/data/eval_fast/epoch1_fast_20251119_133104/fast_results.pkl'
print(f"正在加载结果文件: {results_file}")
with open(results_file, 'rb') as f:
results = pickle.load(f)
print(f"结果文件包含 {len(results)} 个样本")
# 检查结果格式
if results:
sample = results[0]
print(f"样本键: {list(sample.keys())}")
if 'boxes_3d' in sample:
print(f"检测框数量: {len(sample['boxes_3d'])}")
if 'masks_bev' in sample:
print(f"BEV分割mask形状: {sample['masks_bev'].shape}")
# 进行评估
print("开始评估...")
eval_kwargs = dict(
metric=['bbox', 'map'],
save_best=None,
rule=None,
logger=None
)
try:
eval_results = dataset.evaluate(results, **eval_kwargs)
print("\n" + "="*50)
print("评估结果:")
print("="*50)
for key, value in eval_results.items():
if isinstance(value, float):
print("30")
else:
print(f"{key}: {value}")
except Exception as e:
print(f"评估失败: {e}")
import traceback
traceback.print_exc()
if __name__ == '__main__':
main()