200 lines
5.0 KiB
Markdown
200 lines
5.0 KiB
Markdown
|
|
# BEVFusion项目状态总结 - 2025-10-30
|
|||
|
|
|
|||
|
|
**更新时间**: 2025-10-30 13:14
|
|||
|
|
**状态**: ✅ Phase 4A Stage 1正在训练
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 📊 项目进展概览
|
|||
|
|
|
|||
|
|
### ✅ Phase 1-2: 基础训练 (已完成)
|
|||
|
|
- Epoch 1-19: 基础多任务模型
|
|||
|
|
- Checkpoint: epoch_19.pth
|
|||
|
|
|
|||
|
|
### ✅ Phase 3: 增强分割头 (已完成)
|
|||
|
|
- **时间**: 2025-10-21 至 10-29
|
|||
|
|
- **Epoch**: 20-23 (4 epochs)
|
|||
|
|
- **配置**: EnhancedBEVSegmentationHead (ASPP + Attention + GroupNorm)
|
|||
|
|
- BEV分辨率: 0.3m (360×360)
|
|||
|
|
- Decoder: 2层 [256, 128]
|
|||
|
|
- Deep Supervision: ❌ 关闭
|
|||
|
|
- Dice Loss: ❌ 关闭
|
|||
|
|
|
|||
|
|
**Phase 3最终性能** (epoch_23.pth):
|
|||
|
|
```
|
|||
|
|
3D检测:
|
|||
|
|
NDS: 0.6941 (+1.3%)
|
|||
|
|
mAP: 0.6446 (+0.9%)
|
|||
|
|
|
|||
|
|
BEV分割 @ 0.3m分辨率:
|
|||
|
|
整体mIoU: 0.41
|
|||
|
|
Drivable Area: 0.83 ✅
|
|||
|
|
Ped. Crossing: 0.57 ✅
|
|||
|
|
Walkway: 0.49 ✅
|
|||
|
|
Stop Line: 0.27 ⚠️ 需提升
|
|||
|
|
Carpark Area: 0.36 ⚠️ 需提升
|
|||
|
|
Divider: 0.19 ⚠️ 需提升
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
### 🔄 Phase 4A Stage 1: 渐进式分辨率提升 (进行中)
|
|||
|
|
- **启动时间**: 2025-10-30 13:08
|
|||
|
|
- **Epoch**: 1/10 (iter 100/30895)
|
|||
|
|
- **配置**: Enhanced头 + 更高分辨率
|
|||
|
|
- BEV分辨率: 0.2m (540×540) **+50%**
|
|||
|
|
- GT分辨率: 0.167m (600×600) **+50%**
|
|||
|
|
- Decoder: 4层 [256, 256, 128, 128] **2x**
|
|||
|
|
- Deep Supervision: ✅ **新增**
|
|||
|
|
- Dice Loss: ✅ **新增**
|
|||
|
|
|
|||
|
|
**当前训练状态**:
|
|||
|
|
```
|
|||
|
|
GPU: 4张 Tesla V100S (~30GB显存/GPU)
|
|||
|
|
GPU利用率: 50-100% ⚡
|
|||
|
|
ETA: 20天 6小时 (10 epochs)
|
|||
|
|
Loss: 6.9192 → 6.3177 (下降中)
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
**Early Loss Indicators** (iter 100):
|
|||
|
|
```
|
|||
|
|
Stop Line: dice=0.9413, focal=0.0218 (比Phase 3启动时更好)
|
|||
|
|
Divider: dice=0.9429, focal=0.0158 (比Phase 3启动时更好)
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 🎯 技术改进总结
|
|||
|
|
|
|||
|
|
### Phase 3 → Phase 4A Stage 1
|
|||
|
|
|
|||
|
|
| 改进项 | Phase 3 | Stage 1 | 说明 |
|
|||
|
|
|--------|---------|---------|------|
|
|||
|
|
| **BEV分辨率** | 360×360 | 540×540 | +50% (更细致的特征) |
|
|||
|
|
| **GT标签分辨率** | 400×400 | 600×600 | +50% (更精确的标注) |
|
|||
|
|
| **Decoder深度** | 2层 | 4层 | 2x (更强的表达能力) |
|
|||
|
|
| **Deep Supervision** | 无 | 有 | 多尺度监督 |
|
|||
|
|
| **Dice Loss** | 无 | 有 | 边界优化 |
|
|||
|
|
| **插值上采样** | 无 | 有 | 自适应尺寸匹配 |
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 💡 回答您的问题
|
|||
|
|
|
|||
|
|
**Q: phase3 segment头有插值上采样吗?**
|
|||
|
|
|
|||
|
|
**A: 没有**。Phase 3配置:
|
|||
|
|
```yaml
|
|||
|
|
deep_supervision: false # 关闭
|
|||
|
|
use_dice_loss: false # 关闭
|
|||
|
|
decoder_channels: [256, 128] # 简化
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
- Phase 3只使用了ASPP和Attention,没有deep supervision
|
|||
|
|
- 没有aux_classifier,因此不需要插值上采样
|
|||
|
|
- 这也是为什么Phase 4A启用deep supervision后遇到类型转换bug的原因
|
|||
|
|
|
|||
|
|
**Phase 4A的改进**:
|
|||
|
|
- 启用deep supervision → 需要插值aux_classifier的输出
|
|||
|
|
- 启用dice loss → 需要float类型target
|
|||
|
|
- 修复方案: 在插值时使用`.float()`而不是`.long()`
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 🚧 已解决的技术问题
|
|||
|
|
|
|||
|
|
### 1. Docker重启环境问题 ✅
|
|||
|
|
- **问题**: mmcv无法加载libtorch库
|
|||
|
|
- **原因**: 库文件命名不匹配
|
|||
|
|
- **解决**: 创建符号链接bridging
|
|||
|
|
|
|||
|
|
### 2. 显存不足 (800×800) ✅
|
|||
|
|
- **问题**: 800×800需要~4GB/sample,OOM
|
|||
|
|
- **原因**: 分辨率提升4x,显存需求4x增长
|
|||
|
|
- **解决**: 采用渐进式训练,Stage 1使用600×600
|
|||
|
|
|
|||
|
|
### 3. Shape不匹配 ✅
|
|||
|
|
- **问题**: Model输出400×400 vs GT标签800×800
|
|||
|
|
- **原因**: output_scope配置不一致
|
|||
|
|
- **解决**: 修改配置 + 添加自适应插值
|
|||
|
|
|
|||
|
|
### 4. Deep Supervision类型bug ✅
|
|||
|
|
- **问题**: F.interpolate对Long型tensor报错
|
|||
|
|
- **原因**: PyTorch不支持整型tensor的插值
|
|||
|
|
- **解决**: 转float插值,保持float用于focal loss
|
|||
|
|
|
|||
|
|
### 5. Python缓存问题 ✅
|
|||
|
|
- **问题**: 代码修改后不生效
|
|||
|
|
- **解决**: 清除__pycache__
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 📈 预期成果
|
|||
|
|
|
|||
|
|
### Stage 1 (600×600, 当前训练中)
|
|||
|
|
```
|
|||
|
|
预计训练时间: ~9天
|
|||
|
|
预期性能提升:
|
|||
|
|
Stop Line IoU: 0.27 → 0.35+ (+30%)
|
|||
|
|
Divider IoU: 0.19 → 0.28+ (+47%)
|
|||
|
|
整体mIoU: 0.41 → 0.48+ (+17%)
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
### Stage 2 (800×800, 待规划)
|
|||
|
|
```
|
|||
|
|
基于Stage 1 checkpoint
|
|||
|
|
可能需要: Gradient checkpointing或3张GPU
|
|||
|
|
预期最终性能:
|
|||
|
|
Stop Line IoU: 0.35 → 0.42+
|
|||
|
|
Divider IoU: 0.28 → 0.35+
|
|||
|
|
整体mIoU: 0.48 → 0.54+
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 📂 文档索引
|
|||
|
|
|
|||
|
|
- ✅ `PROJECT_STATUS_FULL_REPORT_20251030.md` - 完整进展报告
|
|||
|
|
- ✅ `PHASE4A_STATUS_AND_ENVIRONMENT.md` - Phase 4A技术细节
|
|||
|
|
- ✅ `PHASE4A_STAGE1_LAUNCHED_SUCCESS.md` - Stage 1启动记录
|
|||
|
|
- ✅ `ENVIRONMENT_FIX_RECORD.md` - Docker环境修复
|
|||
|
|
- ✅ `PHASE4A_GPU_MEMORY_ISSUE.md` - 显存分析
|
|||
|
|
- ✅ `PHASE4A_ANALYSIS.md` - 分辨率问题分析
|
|||
|
|
- ✅ `项目状态总览_20251030.md` - 总览索引
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 🔍 监控方法
|
|||
|
|
|
|||
|
|
```bash
|
|||
|
|
# 实时监控
|
|||
|
|
tail -f phase4a_stage1_*.log | grep "Epoch \["
|
|||
|
|
|
|||
|
|
# 监控脚本
|
|||
|
|
bash monitor_phase4a_stage1.sh
|
|||
|
|
|
|||
|
|
# GPU状态
|
|||
|
|
nvidia-smi
|
|||
|
|
|
|||
|
|
# Checkpoint
|
|||
|
|
ls -lh runs/run-326653dc-c038af2c/epoch_*.pth
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## ⏭️ 下一步
|
|||
|
|
|
|||
|
|
1. ⏸️ 等待Epoch 1完成验证 (~22小时)
|
|||
|
|
2. ⏸️ 监控训练稳定性
|
|||
|
|
3. ⏸️ Epoch 5评估性能提升
|
|||
|
|
4. ⏸️ 完成10 epochs (~9天)
|
|||
|
|
5. 📋 规划Stage 2 (800×800)
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
**当前状态**: 🚀 Phase 4A Stage 1正常运行!
|
|||
|
|
|
|||
|
|
**距离Epoch 1验证**: ~21小时
|
|||
|
|
**距离完成Stage 1**: ~9天
|
|||
|
|
|
|||
|
|
|
|||
|
|
|