bev-project/archive_scripts/start_multitask_training_fi...

44 lines
1.3 KiB
Bash
Raw Normal View History

#!/bin/bash
# 多任务训练最终版本
set -e
export PATH=/opt/conda/bin:$PATH
cd /workspace/bevfusion
echo "=========================================="
echo "BEVFusion 多任务训练"
echo "任务: 3D检测 + BEV分割同时训练"
echo "=========================================="
echo ""
echo "配置信息:"
echo " 配置: multitask.yaml (检测+分割)"
echo " GPU: 8x Tesla V100S (32GB)"
echo " Epochs: 20"
echo " 优化: workers_per_gpu=0"
echo ""
echo "预计训练时间: 28-32小时"
echo "预期性能:"
echo " - 检测: mAP ~67-69%"
echo " - 分割: mIoU ~61-62%"
echo ""
echo "模型特点:"
echo " - 一个模型同时输出检测和分割"
echo " - 共享特征提取encoder/fuser/decoder"
echo " - 两个独立的任务头object + map"
echo " - 两个任务的梯度同时更新模型"
echo ""
echo "=========================================="
echo ""
torchpack dist-run -np 8 python tools/train.py \
configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/multitask.yaml \
--model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth \
--load_from pretrained/lidar-only-det.pth \
--data.workers_per_gpu 0
echo ""
echo "=========================================="
echo "多任务训练完成!"
echo "=========================================="